description: An deprecated optimizer that applies loss scaling.
![]() |
An deprecated optimizer that applies loss scaling.
Inherits From: LossScaleOptimizer
, Optimizer
tf.keras.mixed_precision.experimental.LossScaleOptimizer(
optimizer, loss_scale
)
Warning: This class is deprecated and will be removed in TensorFlow 2.5.
Please use the non-experimental class
tf.keras.mixed_precision.LossScaleOptimizer
instead.
This class is identical to the non-experimental
keras.mixed_precision.LossScaleOptimizer
except its constructor takes
different arguments. For this class (the experimental version), the
constructor takes a loss_scale
argument. For the non-experimental class,
the constructor encodes the loss scaling information in multiple arguments.
Note that unlike this class, the non-experimental class does not accept a
tf.compat.v1.mixed_precision.LossScale
, which is deprecated.
If you currently use this class, you should switch to the non-experimental
tf.keras.mixed_precision.LossScaleOptimizer
instead. We show several
examples of converting the use of the experimental class to the equivalent
non-experimental class.
>>> # In all of the the examples below, `opt1` and `opt2` are identical
>>> opt1 = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
... tf.keras.optimizers.SGD(), loss_scale='dynamic')
>>> opt2 = tf.keras.mixed_precision.LossScaleOptimizer(
... tf.keras.optimizers.SGD())
>>> assert opt1.get_config() == opt2.get_config()
>>> opt1 = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
... tf.keras.optimizers.SGD(), loss_scale=123)
>>> # dynamic=False indicates to use fixed loss scaling. initial_scale=123
>>> # refers to the initial loss scale, which is the single fixed loss scale
>>> # when dynamic=False.
>>> opt2 = tf.keras.mixed_precision.LossScaleOptimizer(
... tf.keras.optimizers.SGD(), dynamic=False, initial_scale=123)
>>> assert opt1.get_config() == opt2.get_config()
>>> loss_scale = tf.compat.v1.mixed_precision.experimental.DynamicLossScale(
... initial_loss_scale=2048, increment_period=500)
>>> opt1 = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
... tf.keras.optimizers.SGD(), loss_scale=loss_scale)
>>> opt2 = tf.keras.mixed_precision.LossScaleOptimizer(
... tf.keras.optimizers.SGD(), initial_scale=2048,
... dynamic_growth_steps=500)
>>> assert opt1.get_config() == opt2.get_config()
Make sure to also switch from this class to the non-experimental class in
isinstance checks, if you have any. If you do not do this, your model may run
into hard-to-debug issues, as the experimental LossScaleOptimizer
subclasses
the non-experimental LossScaleOptimizer
, but not vice versa. It is safe to
switch isinstance checks to the non-experimental LossScaleOptimizer
even
before using the non-experimental LossScaleOptimizer
.
>>> opt1 = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
... tf.keras.optimizers.SGD(), loss_scale='dynamic')
>>> # The experimental class subclasses the non-experimental class
>>> isinstance(opt1, tf.keras.mixed_precision.LossScaleOptimizer)
True
>>> opt2 = tf.keras.mixed_precision.LossScaleOptimizer(
... tf.keras.optimizers.SGD())
>>> # The non-experimental class does NOT subclass the experimental class.
>>> isinstance(opt2, tf.keras.mixed_precision.experimental.LossScaleOptimizer)
False
Args | |
---|---|
optimizer
|
The Optimizer instance to wrap. |
loss_scale
|
The loss scale to scale the loss and gradients. This can
either be an int/float to use a fixed loss scale, the string "dynamic"
to use dynamic loss scaling, or an instance of a LossScale. The string
"dynamic" equivalent to passing DynamicLossScale() , and passing an
int/float is equivalent to passing a FixedLossScale with the given loss
scale. If a DynamicLossScale is passed, DynamicLossScale.multiplier must
be 2 (the default).
|
Raises | |
---|---|
ValueError
|
in case of any invalid argument. |
Attributes | |
---|---|
clipnorm
|
float or None . If set, clips gradients to a maximum norm.
|
clipvalue
|
float or None . If set, clips gradients to a maximum value.
|
dynamic
|
Bool indicating whether dynamic loss scaling is used. |
dynamic_counter
|
The number of steps since the loss scale was last increased or decreased.
This is None if The counter is incremented every step. Once it reaches
|
dynamic_growth_steps
|
The number of steps it takes to increase the loss scale.
This is None if Every |
global_clipnorm
|
float or None . If set, clips gradients to a maximum norm.
|
initial_scale
|
The initial loss scale.
If |
inner_optimizer
|
The optimizer that this LossScaleOptimizer is wrapping. |
iterations
|
Variable. The number of training steps this Optimizer has run. |
loss_scale
|
The current loss scale as a float32 scalar tensor. |
weights
|
Returns variables of this Optimizer based on the order created. |
add_slot
add_slot(
var, slot_name, initializer='zeros'
)
Add a new slot variable for var
.
add_weight
add_weight(
name, shape, dtype=None, initializer='zeros', trainable=None,
synchronization=tf.VariableSynchronization.AUTO,
aggregation=tf.compat.v1.VariableAggregation.NONE
)
apply_gradients
apply_gradients(
grads_and_vars, name=None, experimental_aggregate_gradients=True
)
Apply gradients to variables.
This is the second part of minimize()
. It returns an Operation
that
applies gradients.
The method sums gradients from all replicas in the presence of
tf.distribute.Strategy
by default. You can aggregate gradients yourself by
passing experimental_aggregate_gradients=False
.
grads = tape.gradient(loss, vars)
grads = tf.distribute.get_replica_context().all_reduce('sum', grads)
# Processing aggregated gradients.
optimizer.apply_gradients(zip(grads, vars),
experimental_aggregate_gradients=False)
Args | |
---|---|
grads_and_vars
|
List of (gradient, variable) pairs. |
name
|
Optional name for the returned operation. Default to the name passed
to the Optimizer constructor.
|
experimental_aggregate_gradients
|
Whether to sum gradients from different
replicas in the presense of tf.distribute.Strategy . If False, it's
user responsibility to aggregate the gradients. Default to True.
|
Returns | |
---|---|
An Operation that applies the specified gradients. The iterations
will be automatically increased by 1.
|
Raises | |
---|---|
TypeError
|
If grads_and_vars is malformed.
|
ValueError
|
If none of the variables have gradients. |
RuntimeError
|
If called in a cross-replica context. |
from_config
@classmethod
from_config( config, custom_objects=None )
Creates an optimizer from its config.
This method is the reverse of get_config
,
capable of instantiating the same optimizer from the config
dictionary.
Arguments | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
custom_objects
|
A Python dictionary mapping names to additional Python objects used to create this optimizer, such as a function used for a hyperparameter. |
Returns | |
---|---|
An optimizer instance. |
get_config
get_config()
Returns the config of the optimizer.
An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.
Returns | |
---|---|
Python dictionary. |
get_gradients
get_gradients(
loss, params
)
Returns gradients of loss
with respect to params
.
Should be used only in legacy v1 graph mode.
Arguments | |
---|---|
loss
|
Loss tensor. |
params
|
List of variables. |
Returns | |
---|---|
List of gradient tensors. |
Raises | |
---|---|
ValueError
|
In case any gradient cannot be computed (e.g. if gradient function not implemented). |
get_scaled_loss
get_scaled_loss(
loss
)
Scales the loss by the loss scale.
This method is only needed if you compute gradients manually, e.g. with
tf.GradientTape
. In that case, call this method to scale the loss before
passing the loss to tf.GradientTape
. If you use
LossScaleOptimizer.minimize
or LossScaleOptimizer.get_gradients
, loss
scaling is automatically applied and this method is unneeded.
If this method is called, get_unscaled_gradients
should also be called.
See the tf.keras.mixed_precision.LossScaleOptimizer
doc for
an example.
Args | |
---|---|
loss
|
The loss, which will be multiplied by the loss scale. Can either be a tensor or a callable returning a tensor. |
Returns | |
---|---|
loss multiplied by LossScaleOptimizer.loss_scale .
|
get_slot
get_slot(
var, slot_name
)
get_slot_names
get_slot_names()
A list of names for this optimizer's slots.
get_unscaled_gradients
get_unscaled_gradients(
grads
)
Unscales the gradients by the loss scale.
This method is only needed if you compute gradients manually, e.g. with
tf.GradientTape
. In that case, call this method to unscale the gradients
after computing them with tf.GradientTape
. If you use
LossScaleOptimizer.minimize
or LossScaleOptimizer.get_gradients
, loss
scaling is automatically applied and this method is unneeded.
If this method is called, get_scaled_loss
should also be called. See
the tf.keras.mixed_precision.LossScaleOptimizer
doc for an
example.
Args | |
---|---|
grads
|
A list of tensors, each which will be divided by the loss scale. Can have None values, which are ignored. |
Returns | |
---|---|
A new list the same size as grads , where every non-None value in grads
is divided by LossScaleOptimizer.loss_scale .
|
get_updates
get_updates(
loss, params
)
get_weights
get_weights()
Returns the current weights of the optimizer.
The weights of an optimizer are its state (ie, variables). This function returns the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they were created. The returned list can in turn be used to load state into similarly parameterized optimizers.
For example, the RMSprop optimizer for this simple model returns a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:
>>> opt = tf.keras.optimizers.RMSprop()
>>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> m.compile(opt, loss='mse')
>>> data = np.arange(100).reshape(5, 20)
>>> labels = np.zeros(5)
>>> print('Training'); results = m.fit(data, labels)
Training ...
>>> len(opt.get_weights())
3
Returns | |
---|---|
Weights values as a list of numpy arrays. |
minimize
minimize(
loss, var_list, grad_loss=None, name=None, tape=None
)
Minimize loss
by updating var_list
.
This method simply computes gradient using tf.GradientTape
and calls
apply_gradients()
. If you want to process the gradient before applying
then call tf.GradientTape
and apply_gradients()
explicitly instead
of using this function.
Args | |
---|---|
loss
|
Tensor or callable. If a callable, loss should take no arguments
and return the value to minimize. If a Tensor , the tape argument
must be passed.
|
var_list
|
list or tuple of Variable objects to update to minimize
loss , or a callable returning the list or tuple of Variable objects.
Use callable when the variable list would otherwise be incomplete before
minimize since the variables are created at the first time loss is
called.
|
grad_loss
|
(Optional). A Tensor holding the gradient computed for
loss .
|
name
|
(Optional) str. Name for the returned operation. |
tape
|
(Optional) tf.GradientTape . If loss is provided as a Tensor ,
the tape that computed the loss must be provided.
|
Returns | |
---|---|
An Operation that updates the variables in var_list . The iterations
will be automatically increased by 1.
|
Raises | |
---|---|
ValueError
|
If some of the variables are not Variable objects.
|
set_weights
set_weights(
weights
)
Set the weights of the optimizer.
The weights of an optimizer are its state (ie, variables). This function takes the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they are created. The passed values are used to set the new state of the optimizer.
For example, the RMSprop optimizer for this simple model takes a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:
>>> opt = tf.keras.optimizers.RMSprop()
>>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> m.compile(opt, loss='mse')
>>> data = np.arange(100).reshape(5, 20)
>>> labels = np.zeros(5)
>>> print('Training'); results = m.fit(data, labels)
Training ...
>>> new_weights = [np.array(10), np.ones([20, 10]), np.zeros([10])]
>>> opt.set_weights(new_weights)
>>> opt.iterations
<tf.Variable 'RMSprop/iter:0' shape=() dtype=int64, numpy=10>
Arguments | |
---|---|
weights
|
weight values as a list of numpy arrays. |
variables
variables()
Returns variables of this Optimizer based on the order created.