description: An optimizer that applies loss scaling to prevent numeric underflow.
![]() |
An optimizer that applies loss scaling to prevent numeric underflow.
Inherits From: Optimizer
tf.keras.mixed_precision.LossScaleOptimizer(
inner_optimizer, dynamic=True, initial_scale=None, dynamic_growth_steps=None
)
Loss scaling is a technique to prevent numeric underflow in intermediate gradients when float16 is used. To prevent underflow, the loss is multiplied (or "scaled") by a certain factor called the "loss scale", which causes intermediate gradients to be scaled by the loss scale as well. The final gradients are divided (or "unscaled") by the loss scale to bring them back to their original value.
LossScaleOptimizer
wraps another optimizer and applies loss scaling to it.
By default, the loss scale is dynamically updated over time so you do not have
to choose the loss scale. The minimize
method automatically scales the loss,
unscales the gradients, and updates the loss scale so all you have to do is
wrap your optimizer with a LossScaleOptimizer
if you use minimize
. For
example:
>>> opt = tf.keras.optimizers.SGD(0.25)
>>> opt = tf.keras.mixed_precision.LossScaleOptimizer(opt)
>>> var = tf.Variable(1.)
>>> loss_fn = lambda: var ** 2
>>> # 'minimize' applies loss scaling and updates the loss sale.
>>> opt.minimize(loss_fn, var_list=var)
>>> var.numpy()
0.5
If a tf.GradientTape
is used to compute gradients instead of minimize
, you
must scale the loss and gradients manually. This can be done with the
LossScaleOptimizer.get_scaled_loss
and
LossScaleOptimizer.get_unscaled_gradients
methods. For example:
>>> with tf.GradientTape() as tape:
... loss = loss_fn()
... scaled_loss = opt.get_scaled_loss(loss)
>>> scaled_grad = tape.gradient(scaled_loss, var)
>>> (grad,) = opt.get_unscaled_gradients([scaled_grad])
>>> opt.apply_gradients([(grad, var)]) # Loss scale is updated here
>>> var.numpy()
0.25
Warning: If you forget to call get_scaled_loss
or get_unscaled_gradients
(or both) when using a tf.GradientTape
, the model will likely converge to a
worse quality. Please make sure you call each function exactly once.
When mixed precision with float16 is used, there is typically no risk of underflow affecting model quality if loss scaling is properly used. See the mixed precision guide for more information on how to use mixed precision.
Args | |
---|---|
inner_optimizer
|
The tf.keras.optimizers.Optimizer instance to wrap.
|
dynamic
|
Bool indicating whether dynamic loss scaling is used. Defaults to
True. If True, the loss scale will be dynamically updated over time using
an algorithm that keeps the loss scale at approximately its optimal value.
If False, a single fixed loss scale is used and initial_scale must be
specified, which is used as the loss scale. Recommended to keep as True,
as choosing a fixed loss scale can be tricky. Currently, there is a small
performance overhead to dynamic loss scaling compared to fixed loss
scaling.
|
initial_scale
|
The initial loss scale. If dynamic is True, this defaults
to 2 ** 15 . If dynamic is False, this must be specified and acts as
the sole loss scale, as the loss scale does not change over time. When
dynamic loss scaling is used, is better for this to be a very high number,
because a loss scale that is too high gets lowered far more quickly than a
loss scale that is too low gets raised.
|
dynamic_growth_steps
|
With dynamic loss scaling, every
dynamic_growth_steps steps with finite gradients, the loss scale is
doubled. Defaults to 2000. If a nonfinite gradient is encountered, the
count is reset back to zero, gradients are skipped that step, and the loss
scale is halved. The count can be queried with
LossScaleOptimizer.dynamic_counter . This argument can only be specified
if dynamic is True.
|
LossScaleOptimizer
will occasionally skip applying gradients to the
variables, in which case the trainable variables will not change that step.
This is done because the dynamic loss scale will sometimes be raised too
high, causing overflow in the gradients. Typically, the first 2 to 15 steps of
the model are skipped as the initial loss scale is very high, but afterwards
steps will only be skipped on average 0.05% of the time (the fraction of steps
skipped is 1 / dynamic_growth_steps
).
LossScaleOptimizer
delegates all public Optimizer
methods to the inner
optimizer. Additionally, in methods minimize
and get_gradients, it scales
the loss and unscales the gradients. In methods
minimizeand
apply_gradients`, it additionally updates the loss scale and skips applying
gradients if any gradient has a nonfinite value.
Hyperparameters can be accessed and set on the LossScaleOptimizer, which will be delegated to the wrapped optimizer.
>>> opt = tf.keras.optimizers.Adam(beta_1=0.8, epsilon=1e-5)
>>> opt = tf.keras.mixed_precision.LossScaleOptimizer(opt)
>>> opt.beta_1 # Equivalent to `opt.inner_optimizer.beta_1`
0.8
>>> opt.beta_1 = 0.7 # Equivalent to `opt.inner_optimizer.beta_1 = 0.7`
>>> opt.beta_1
0.7
>>> opt.inner_optimizer.beta_1
0.7
However, accessing or setting non-hyperparameters is not delegated to the
LossScaleOptimizer. In an Adam optimizer, beta_1
is a hyperparameter but
epsilon
is not, as the Adam optimizer only calls Optimizer._set_hyper
on
beta_1
.
>>> opt.inner_optimizer.epsilon
1e-5
>>> opt.epsilon
Traceback (most recent call last):
...
AttributeError: 'LossScaleOptimizer' object has no attribute 'epsilon'
>>> opt.epsilon = 1e-4 # This does NOT set epsilon on `opt.inner_optimizer`
>>> opt.inner_optimizer.epsilon
>>> 1e-5
In the above example, despite epsilon being set on the LossScaleOptimizer, the old epsilon value will still be used when training as epsilon was not set on the inner optimizer.
Raises | |
---|---|
ValueError
|
in case of any invalid argument. |
Attributes | |
---|---|
clipnorm
|
float or None . If set, clips gradients to a maximum norm.
|
clipvalue
|
float or None . If set, clips gradients to a maximum value.
|
dynamic
|
Bool indicating whether dynamic loss scaling is used. |
dynamic_counter
|
The number of steps since the loss scale was last increased or decreased.
This is None if The counter is incremented every step. Once it reaches
|
dynamic_growth_steps
|
The number of steps it takes to increase the loss scale.
This is None if Every |
global_clipnorm
|
float or None . If set, clips gradients to a maximum norm.
|
initial_scale
|
The initial loss scale.
If |
inner_optimizer
|
The optimizer that this LossScaleOptimizer is wrapping. |
iterations
|
Variable. The number of training steps this Optimizer has run. |
loss_scale
|
The current loss scale as a float32 scalar tensor. |
weights
|
Returns variables of this Optimizer based on the order created. |
add_slot
add_slot(
var, slot_name, initializer='zeros'
)
Add a new slot variable for var
.
add_weight
add_weight(
name, shape, dtype=None, initializer='zeros', trainable=None,
synchronization=tf.VariableSynchronization.AUTO,
aggregation=tf.compat.v1.VariableAggregation.NONE
)
apply_gradients
apply_gradients(
grads_and_vars, name=None, experimental_aggregate_gradients=True
)
Apply gradients to variables.
This is the second part of minimize()
. It returns an Operation
that
applies gradients.
The method sums gradients from all replicas in the presence of
tf.distribute.Strategy
by default. You can aggregate gradients yourself by
passing experimental_aggregate_gradients=False
.
grads = tape.gradient(loss, vars)
grads = tf.distribute.get_replica_context().all_reduce('sum', grads)
# Processing aggregated gradients.
optimizer.apply_gradients(zip(grads, vars),
experimental_aggregate_gradients=False)
Args | |
---|---|
grads_and_vars
|
List of (gradient, variable) pairs. |
name
|
Optional name for the returned operation. Default to the name passed
to the Optimizer constructor.
|
experimental_aggregate_gradients
|
Whether to sum gradients from different
replicas in the presense of tf.distribute.Strategy . If False, it's
user responsibility to aggregate the gradients. Default to True.
|
Returns | |
---|---|
An Operation that applies the specified gradients. The iterations
will be automatically increased by 1.
|
Raises | |
---|---|
TypeError
|
If grads_and_vars is malformed.
|
ValueError
|
If none of the variables have gradients. |
RuntimeError
|
If called in a cross-replica context. |
from_config
@classmethod
from_config( config, custom_objects=None )
Creates an optimizer from its config.
This method is the reverse of get_config
,
capable of instantiating the same optimizer from the config
dictionary.
Arguments | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
custom_objects
|
A Python dictionary mapping names to additional Python objects used to create this optimizer, such as a function used for a hyperparameter. |
Returns | |
---|---|
An optimizer instance. |
get_config
get_config()
Returns the config of the optimizer.
An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.
Returns | |
---|---|
Python dictionary. |
get_gradients
get_gradients(
loss, params
)
Returns gradients of loss
with respect to params
.
Should be used only in legacy v1 graph mode.
Arguments | |
---|---|
loss
|
Loss tensor. |
params
|
List of variables. |
Returns | |
---|---|
List of gradient tensors. |
Raises | |
---|---|
ValueError
|
In case any gradient cannot be computed (e.g. if gradient function not implemented). |
get_scaled_loss
get_scaled_loss(
loss
)
Scales the loss by the loss scale.
This method is only needed if you compute gradients manually, e.g. with
tf.GradientTape
. In that case, call this method to scale the loss before
passing the loss to tf.GradientTape
. If you use
LossScaleOptimizer.minimize
or LossScaleOptimizer.get_gradients
, loss
scaling is automatically applied and this method is unneeded.
If this method is called, get_unscaled_gradients
should also be called.
See the tf.keras.mixed_precision.LossScaleOptimizer
doc for
an example.
Args | |
---|---|
loss
|
The loss, which will be multiplied by the loss scale. Can either be a tensor or a callable returning a tensor. |
Returns | |
---|---|
loss multiplied by LossScaleOptimizer.loss_scale .
|
get_slot
get_slot(
var, slot_name
)
get_slot_names
get_slot_names()
A list of names for this optimizer's slots.
get_unscaled_gradients
get_unscaled_gradients(
grads
)
Unscales the gradients by the loss scale.
This method is only needed if you compute gradients manually, e.g. with
tf.GradientTape
. In that case, call this method to unscale the gradients
after computing them with tf.GradientTape
. If you use
LossScaleOptimizer.minimize
or LossScaleOptimizer.get_gradients
, loss
scaling is automatically applied and this method is unneeded.
If this method is called, get_scaled_loss
should also be called. See
the tf.keras.mixed_precision.LossScaleOptimizer
doc for an
example.
Args | |
---|---|
grads
|
A list of tensors, each which will be divided by the loss scale. Can have None values, which are ignored. |
Returns | |
---|---|
A new list the same size as grads , where every non-None value in grads
is divided by LossScaleOptimizer.loss_scale .
|
get_updates
get_updates(
loss, params
)
get_weights
get_weights()
Returns the current weights of the optimizer.
The weights of an optimizer are its state (ie, variables). This function returns the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they were created. The returned list can in turn be used to load state into similarly parameterized optimizers.
For example, the RMSprop optimizer for this simple model returns a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:
>>> opt = tf.keras.optimizers.RMSprop()
>>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> m.compile(opt, loss='mse')
>>> data = np.arange(100).reshape(5, 20)
>>> labels = np.zeros(5)
>>> print('Training'); results = m.fit(data, labels)
Training ...
>>> len(opt.get_weights())
3
Returns | |
---|---|
Weights values as a list of numpy arrays. |
minimize
minimize(
loss, var_list, grad_loss=None, name=None, tape=None
)
Minimize loss
by updating var_list
.
This method simply computes gradient using tf.GradientTape
and calls
apply_gradients()
. If you want to process the gradient before applying
then call tf.GradientTape
and apply_gradients()
explicitly instead
of using this function.
Args | |
---|---|
loss
|
Tensor or callable. If a callable, loss should take no arguments
and return the value to minimize. If a Tensor , the tape argument
must be passed.
|
var_list
|
list or tuple of Variable objects to update to minimize
loss , or a callable returning the list or tuple of Variable objects.
Use callable when the variable list would otherwise be incomplete before
minimize since the variables are created at the first time loss is
called.
|
grad_loss
|
(Optional). A Tensor holding the gradient computed for
loss .
|
name
|
(Optional) str. Name for the returned operation. |
tape
|
(Optional) tf.GradientTape . If loss is provided as a Tensor ,
the tape that computed the loss must be provided.
|
Returns | |
---|---|
An Operation that updates the variables in var_list . The iterations
will be automatically increased by 1.
|
Raises | |
---|---|
ValueError
|
If some of the variables are not Variable objects.
|
set_weights
set_weights(
weights
)
Set the weights of the optimizer.
The weights of an optimizer are its state (ie, variables). This function takes the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they are created. The passed values are used to set the new state of the optimizer.
For example, the RMSprop optimizer for this simple model takes a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:
>>> opt = tf.keras.optimizers.RMSprop()
>>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> m.compile(opt, loss='mse')
>>> data = np.arange(100).reshape(5, 20)
>>> labels = np.zeros(5)
>>> print('Training'); results = m.fit(data, labels)
Training ...
>>> new_weights = [np.array(10), np.ones([20, 10]), np.zeros([10])]
>>> opt.set_weights(new_weights)
>>> opt.iterations
<tf.Variable 'RMSprop/iter:0' shape=() dtype=int64, numpy=10>
Arguments | |
---|---|
weights
|
weight values as a list of numpy arrays. |
variables
variables()
Returns variables of this Optimizer based on the order created.