![]() |
Returns a matrix to warp linear scale spectrograms to the mel scale.
Aliases:
tf.compat.v1.signal.linear_to_mel_weight_matrix
tf.compat.v2.signal.linear_to_mel_weight_matrix
tf.contrib.signal.linear_to_mel_weight_matrix
tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=20,
num_spectrogram_bins=129,
sample_rate=8000,
lower_edge_hertz=125.0,
upper_edge_hertz=3800.0,
dtype=tf.dtypes.float32,
name=None
)
Returns a weight matrix that can be used to re-weight a Tensor
containing
num_spectrogram_bins
linearly sampled frequency information from
[0, sample_rate / 2]
into num_mel_bins
frequency information from
[lower_edge_hertz, upper_edge_hertz]
on the mel scale.
For example, the returned matrix A
can be used to right-multiply a
spectrogram S
of shape [frames, num_spectrogram_bins]
of linear
scale spectrum values (e.g. STFT magnitudes) to generate a "mel spectrogram"
M
of shape [frames, num_mel_bins]
.
# `S` has shape [frames, num_spectrogram_bins]
# `M` has shape [frames, num_mel_bins]
M = tf.matmul(S, A)
The matrix can be used with tf.tensordot
to convert an arbitrary rank
Tensor
of linear-scale spectral bins into the mel scale.
# S has shape [..., num_spectrogram_bins].
# M has shape [..., num_mel_bins].
M = tf.tensordot(S, A, 1)
# tf.tensordot does not support shape inference for this case yet.
M.set_shape(S.shape[:-1].concatenate(A.shape[-1:]))
Args:
num_mel_bins
: Python int. How many bands in the resulting mel spectrum.num_spectrogram_bins
: An integerTensor
. How many bins there are in the source spectrogram data, which is understood to befft_size // 2 + 1
, i.e. the spectrogram only contains the nonredundant FFT bins.sample_rate
: Python float. Samples per second of the input signal used to create the spectrogram. We need this to figure out the actual frequencies for each spectrogram bin, which dictates how they are mapped into the mel scale.lower_edge_hertz
: Python float. Lower bound on the frequencies to be included in the mel spectrum. This corresponds to the lower edge of the lowest triangular band.upper_edge_hertz
: Python float. The desired top edge of the highest frequency band.dtype
: TheDType
of the result matrix. Must be a floating point type.name
: An optional name for the operation.
Returns:
A Tensor
of shape [num_spectrogram_bins, num_mel_bins]
.
Raises:
ValueError
: Ifnum_mel_bins
/num_spectrogram_bins
/sample_rate
are not positive,lower_edge_hertz
is negative, frequency edges are incorrectly ordered,upper_edge_hertz
is larger than the Nyquist frequency, orsample_rate
is neither a Python float nor a constant Tensor.