![]() |
Class LocallyConnected2D
Locally-connected layer for 2D inputs.
Inherits From: Layer
Aliases:
- Class
tf.compat.v1.keras.layers.LocallyConnected2D
- Class
tf.compat.v2.keras.layers.LocallyConnected2D
The LocallyConnected2D
layer works similarly
to the Conv2D
layer, except that weights are unshared,
that is, a different set of filters is applied at each
different patch of the input.
Examples:
# apply a 3x3 unshared weights convolution with 64 output filters on a
32x32 image
# with `data_format="channels_last"`:
model = Sequential()
model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3)))
# now model.output_shape == (None, 30, 30, 64)
# notice that this layer will consume (30*30)*(3*3*3*64) + (30*30)*64
parameters
# add a 3x3 unshared weights convolution on top, with 32 output filters:
model.add(LocallyConnected2D(32, (3, 3)))
# now model.output_shape == (None, 28, 28, 32)
Arguments:
filters
: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).kernel_size
: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.strides
: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions.padding
: Currently only support"valid"
(case-insensitive)."same"
will be supported in future.data_format
: A string, one ofchannels_last
(default) orchannels_first
. The ordering of the dimensions in the inputs.channels_last
corresponds to inputs with shape(batch, height, width, channels)
whilechannels_first
corresponds to inputs with shape(batch, channels, height, width)
. It defaults to theimage_data_format
value found in your Keras config file at~/.keras/keras.json
. If you never set it, then it will be "channels_last".activation
: Activation function to use. If you don't specify anything, no activation is applied (ie. "linear" activation:a(x) = x
).use_bias
: Boolean, whether the layer uses a bias vector.kernel_initializer
: Initializer for thekernel
weights matrix.bias_initializer
: Initializer for the bias vector.kernel_regularizer
: Regularizer function applied to thekernel
weights matrix.bias_regularizer
: Regularizer function applied to the bias vector.activity_regularizer
: Regularizer function applied to the output of the layer (its "activation").kernel_constraint
: Constraint function applied to the kernel matrix.bias_constraint
: Constraint function applied to the bias vector.implementation
: implementation mode, either1
,2
, or3
.1
loops over input spatial locations to perform the forward pass. It is memory-efficient but performs a lot of (small) ops.2
stores layer weights in a dense but sparsely-populated 2D matrix and implements the forward pass as a single matrix-multiply. It uses a lot of RAM but performs few (large) ops.3
stores layer weights in a sparse tensor and implements the forward pass as a single sparse matrix-multiply.How to choose:
1
: large, dense models,2
: small models,3
: large, sparse models,where "large" stands for large input/output activations (i.e. many
filters
,input_filters
, largenp.prod(input_size)
,np.prod(output_size)
), and "sparse" stands for few connections between inputs and outputs, i.e. small ratio `filters * input_filters * np.prod(kernel_size) / (np.prod(input_size)- np.prod(strides))
, where inputs to and outputs of the layer are assumed to have shapes
input_size + (input_filters,),
output_size + (filters,)` respectively.
It is recommended to benchmark each in the setting of interest to pick the most efficient one (in terms of speed and memory usage). Correct choice of implementation can lead to dramatic speed improvements (e.g. 50X), potentially at the expense of RAM.
Also, only
padding="valid"
is supported byimplementation=1
.- np.prod(strides))
Input shape:
4D tensor with shape:
(samples, channels, rows, cols)
if data_format='channels_first'
or 4D tensor with shape:
(samples, rows, cols, channels)
if data_format='channels_last'.
Output shape:
4D tensor with shape:
(samples, filters, new_rows, new_cols)
if data_format='channels_first'
or 4D tensor with shape:
(samples, new_rows, new_cols, filters)
if data_format='channels_last'.
rows
and cols
values might have changed due to padding.
__init__
__init__(
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
implementation=1,
**kwargs
)