# -*- coding: utf-8 -*- """ Additive Synthesis ================== **Author**: `Moto Hira `__ This tutorial is the continuation of `Oscillator and ADSR Envelope <./oscillator_tutorial.html>`__. This tutorial shows how to perform additive synthesis and subtractive synthesis using TorchAudio's DSP functions. Additive synthesis creates timbre by combining multiple waveform. Subtractive synthesis creates timbre by applying filters. .. warning:: This tutorial requires prototype DSP features, which are available in nightly builds. Please refer to https://pytorch.org/get-started/locally for instructions for installing a nightly build. """ import torch import torchaudio print(torch.__version__) print(torchaudio.__version__) ###################################################################### # Overview # -------- # # try: from torchaudio.prototype.functional import adsr_envelope, extend_pitch, oscillator_bank except ModuleNotFoundError: print( "Failed to import prototype DSP features. " "Please install torchaudio nightly builds. " "Please refer to https://pytorch.org/get-started/locally " "for instructions to install a nightly build." ) raise import matplotlib.pyplot as plt from IPython.display import Audio ###################################################################### # Creating multiple frequency pitches # ----------------------------------- # # The core of additive synthesis is oscillator. We create a timbre by # summing up the multiple waveforms generated by oscillator. # # In `the oscillator tutorial <./oscillator_tutorial.html>`__, we used # :py:func:`~torchaudio.prototype.functional.oscillator_bank` and # :py:func:`~torchaudio.prototype.functional.adsr_envelope` to generate # various waveforms. # # In this tutorial, we use # :py:func:`~torchaudio.prototype.functional.extend_pitch` to create # a timbre from base frequency. # ###################################################################### # # First, we define some constants and helper function that we use # throughout the tutorial. PI = torch.pi PI2 = 2 * torch.pi F0 = 344.0 # fundamental frequency DURATION = 1.1 # [seconds] SAMPLE_RATE = 16_000 # [Hz] NUM_FRAMES = int(DURATION * SAMPLE_RATE) ###################################################################### # def plot(freq, amp, waveform, sample_rate, zoom=None, vol=0.1): t = (torch.arange(waveform.size(0)) / sample_rate).numpy() fig, axes = plt.subplots(4, 1, sharex=True) axes[0].plot(t, freq.numpy()) axes[0].set(title=f"Oscillator bank (bank size: {amp.size(-1)})", ylabel="Frequency [Hz]", ylim=[-0.03, None]) axes[1].plot(t, amp.numpy()) axes[1].set(ylabel="Amplitude", ylim=[-0.03 if torch.all(amp >= 0.0) else None, None]) axes[2].plot(t, waveform) axes[2].set(ylabel="Waveform") axes[3].specgram(waveform, Fs=sample_rate) axes[3].set(ylabel="Spectrogram", xlabel="Time [s]", xlim=[-0.01, t[-1] + 0.01]) for i in range(4): axes[i].grid(True) pos = axes[2].get_position() fig.tight_layout() if zoom is not None: ax = fig.add_axes([pos.x0 + 0.02, pos.y0 + 0.03, pos.width / 2.5, pos.height / 2.0]) ax.plot(t, waveform) ax.set(xlim=zoom, xticks=[], yticks=[]) waveform /= waveform.abs().max() return Audio(vol * waveform, rate=sample_rate, normalize=False) ###################################################################### # Harmonic Overtones # ------------------- # # Harmonic overtones are frequency components that are an integer # multiple of the fundamental frequency. # # We look at how to generate the common waveforms that are used in # synthesizers. That is, # # - Sawtooth wave # - Square wave # - Triangle wave # ###################################################################### # Sawtooth wave # ~~~~~~~~~~~~~ # # `Sawtooth wave `_ can be # expressed as the following. It contains all the integer harmonics, so # it is commonly used in subtractive synthesis as well. # # .. math:: # # \begin{align*} # y_t &= \sum_{k=1}^{K} A_k \sin ( 2 \pi f_k t ) \\ # \text{where} \\ # f_k &= k f_0 \\ # A_k &= -\frac{ (-1) ^k }{k \pi} # \end{align*} # ###################################################################### # The following function takes fundamental frequencies and amplitudes, # and adds extend pitch in accordance with the formula above. # def sawtooth_wave(freq0, amp0, num_pitches, sample_rate): freq = extend_pitch(freq0, num_pitches) mults = [-((-1) ** i) / (PI * i) for i in range(1, 1 + num_pitches)] amp = extend_pitch(amp0, mults) waveform = oscillator_bank(freq, amp, sample_rate=sample_rate) return freq, amp, waveform ###################################################################### # # Now synthesize a waveform # freq0 = torch.full((NUM_FRAMES, 1), F0) amp0 = torch.ones((NUM_FRAMES, 1)) freq, amp, waveform = sawtooth_wave(freq0, amp0, int(SAMPLE_RATE / F0), SAMPLE_RATE) plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0)) ###################################################################### # # It is possible to oscillate the base frequency to create a # time-varying tone based on sawtooth wave. # fm = 10 # rate at which the frequency oscillates [Hz] f_dev = 0.1 * F0 # the degree of frequency oscillation [Hz] phase = torch.linspace(0, fm * PI2 * DURATION, NUM_FRAMES) freq0 = F0 + f_dev * torch.sin(phase).unsqueeze(-1) freq, amp, waveform = sawtooth_wave(freq0, amp0, int(SAMPLE_RATE / F0), SAMPLE_RATE) plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0)) ###################################################################### # Square wave # ~~~~~~~~~~~ # # `Square wave `_ contains # only odd-integer harmonics. # # .. math:: # # \begin{align*} # y_t &= \sum_{k=0}^{K-1} A_k \sin ( 2 \pi f_k t ) \\ # \text{where} \\ # f_k &= n f_0 \\ # A_k &= \frac{ 4 }{n \pi} \\ # n &= 2k + 1 # \end{align*} def square_wave(freq0, amp0, num_pitches, sample_rate): mults = [2.0 * i + 1.0 for i in range(num_pitches)] freq = extend_pitch(freq0, mults) mults = [4 / (PI * (2.0 * i + 1.0)) for i in range(num_pitches)] amp = extend_pitch(amp0, mults) waveform = oscillator_bank(freq, amp, sample_rate=sample_rate) return freq, amp, waveform ###################################################################### # freq0 = torch.full((NUM_FRAMES, 1), F0) amp0 = torch.ones((NUM_FRAMES, 1)) freq, amp, waveform = square_wave(freq0, amp0, int(SAMPLE_RATE / F0 / 2), SAMPLE_RATE) plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0)) ###################################################################### # Triangle wave # ~~~~~~~~~~~~~ # # `Triangle wave `_ # also only contains odd-integer harmonics. # # .. math:: # # \begin{align*} # y_t &= \sum_{k=0}^{K-1} A_k \sin ( 2 \pi f_k t ) \\ # \text{where} \\ # f_k &= n f_0 \\ # A_k &= (-1) ^ k \frac{8}{(n\pi) ^ 2} \\ # n &= 2k + 1 # \end{align*} def triangle_wave(freq0, amp0, num_pitches, sample_rate): mults = [2.0 * i + 1.0 for i in range(num_pitches)] freq = extend_pitch(freq0, mults) c = 8 / (PI**2) mults = [c * ((-1) ** i) / ((2.0 * i + 1.0) ** 2) for i in range(num_pitches)] amp = extend_pitch(amp0, mults) waveform = oscillator_bank(freq, amp, sample_rate=sample_rate) return freq, amp, waveform ###################################################################### # freq, amp, waveform = triangle_wave(freq0, amp0, int(SAMPLE_RATE / F0 / 2), SAMPLE_RATE) plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0)) ###################################################################### # Inharmonic Paritials # -------------------- # # Inharmonic partials refer to freqencies that are not integer multiple # of fundamental frequency. # # They are essential in re-creating realistic sound or # making the result of synthesis more interesting. # ###################################################################### # Bell sound # ~~~~~~~~~~ # # https://computermusicresource.com/Simple.bell.tutorial.html # num_tones = 9 duration = 2.0 num_frames = int(SAMPLE_RATE * duration) freq0 = torch.full((num_frames, 1), F0) mults = [0.56, 0.92, 1.19, 1.71, 2, 2.74, 3.0, 3.76, 4.07] freq = extend_pitch(freq0, mults) amp = adsr_envelope( num_frames=num_frames, attack=0.002, decay=0.998, sustain=0.0, release=0.0, n_decay=2, ) amp = torch.stack([amp * (0.5**i) for i in range(num_tones)], dim=-1) waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE) plot(freq, amp, waveform, SAMPLE_RATE, vol=0.4) ###################################################################### # # As a comparison, the following is the harmonic version of the above. # Only frequency values are different. # The number of overtones and its amplitudes are same. # freq = extend_pitch(freq0, num_tones) waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE) plot(freq, amp, waveform, SAMPLE_RATE) ###################################################################### # References # ---------- # # - https://en.wikipedia.org/wiki/Additive_synthesis # - https://computermusicresource.com/Simple.bell.tutorial.html # - https://computermusicresource.com/Definitions/additive.synthesis.html