![]() |
Class Affine
Compute Y = g(X; shift, scale) = scale @ X + shift
.
Inherits From: Bijector
Here scale = c * I + diag(D1) + tril(L) + V @ diag(D2) @ V.T
.
In TF parlance, the scale
term is logically equivalent to:
scale = (
scale_identity_multiplier * tf.linalg.tensor_diag(tf.ones(d)) +
tf.linalg.tensor_diag(scale_diag) +
scale_tril +
scale_perturb_factor @ diag(scale_perturb_diag) @
tf.transpose([scale_perturb_factor])
)
The scale
term is applied without necessarily materializing constituent
matrices, i.e., the matmul is matrix-free when possible.
Examples
# Y = X
b = Affine()
# Y = X + shift
b = Affine(shift=[1., 2, 3])
# Y = 2 * I @ X.T + shift
b = Affine(shift=[1., 2, 3],
scale_identity_multiplier=2.)
# Y = tf.linalg.tensor_diag(d1) @ X.T + shift
b = Affine(shift=[1., 2, 3],
scale_diag=[-1., 2, 1]) # Implicitly 3x3.
# Y = (I + v * v.T) @ X.T + shift
b = Affine(shift=[1., 2, 3],
scale_perturb_factor=[[1., 0],
[0, 1],
[1, 1]])
# Y = (diag(d1) + v * diag(d2) * v.T) @ X.T + shift
b = Affine(shift=[1., 2, 3],
scale_diag=[1., 3, 3], # Implicitly 3x3.
scale_perturb_diag=[2., 1], # Implicitly 2x2.
scale_perturb_factor=[[1., 0],
[0, 1],
[1, 1]])
__init__
__init__(
shift=None,
scale_identity_multiplier=None,
scale_diag=None,
scale_tril=None,
scale_perturb_factor=None,
scale_perturb_diag=None,
validate_args=False,
name='affine'
)
Instantiates the Affine
bijector. (deprecated)
This Bijector
is initialized with shift
Tensor
and scale
arguments,
giving the forward operation:
Y = g(X) = scale @ X + shift
where the scale
term is logically equivalent to:
scale = (
scale_identity_multiplier * tf.linalg.tensor_diag(tf.ones(d)) +
tf.linalg.tensor_diag(scale_diag) +
scale_tril +
scale_perturb_factor @ diag(scale_perturb_diag) @
tf.transpose([scale_perturb_factor])
)
If none of scale_identity_multiplier
, scale_diag
, or scale_tril
are
specified then scale += IdentityMatrix
. Otherwise specifying a
scale
argument has the semantics of scale += Expand(arg)
, i.e.,
scale_diag != None
means scale += tf.linalg.tensor_diag(scale_diag)
.
Args:
shift
: Floating-pointTensor
. If this is set toNone
, no shift is applied.scale_identity_multiplier
: floating point rank 0Tensor
representing a scaling done to the identity matrix. Whenscale_identity_multiplier = scale_diag = scale_tril = None
thenscale += IdentityMatrix
. Otherwise no scaled-identity-matrix is added toscale
.scale_diag
: Floating-pointTensor
representing the diagonal matrix.scale_diag
has shape [N1, N2, ... k], which represents a k x k diagonal matrix. WhenNone
no diagonal term is added toscale
.scale_tril
: Floating-pointTensor
representing the diagonal matrix.scale_diag
has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. WhenNone
noscale_tril
term is added toscale
. The upper triangular elements above the diagonal are ignored.scale_perturb_factor
: Floating-pointTensor
representing factor matrix with last two dimensions of shape(k, r)
. WhenNone
, no rank-r update is added toscale
.scale_perturb_diag
: Floating-pointTensor
representing the diagonal matrix.scale_perturb_diag
has shape [N1, N2, ... r], which represents anr x r
diagonal matrix. WhenNone
low rank updates will take the formscale_perturb_factor * scale_perturb_factor.T
.validate_args
: Pythonbool
indicating whether arguments should be checked for correctness.name
: Pythonstr
name given to ops managed by this object.
Raises:
ValueError
: ifperturb_diag
is specified but notperturb_factor
.TypeError
: ifshift
has differentdtype
fromscale
arguments.
Properties
dtype
dtype of Tensor
s transformable by this distribution.
forward_min_event_ndims
Returns the minimal number of dimensions bijector.forward operates on.
graph_parents
Returns this Bijector
's graph_parents as a Python list.
inverse_min_event_ndims
Returns the minimal number of dimensions bijector.inverse operates on.
is_constant_jacobian
Returns true iff the Jacobian matrix is not a function of x.
Returns:
is_constant_jacobian
: Pythonbool
.
name
Returns the string name of this Bijector
.
scale
The scale
LinearOperator
in Y = scale @ X + shift
.
shift
The shift
Tensor
in Y = scale @ X + shift
.
validate_args
Returns True if Tensor arguments will be validated.
Methods
tf.contrib.distributions.bijectors.Affine.forward
forward(
x,
name='forward'
)
Returns the forward Bijector
evaluation, i.e., X = g(Y).
Args:
x
:Tensor
. The input to the "forward" evaluation.name
: The name to give this op.
Returns:
Tensor
.
Raises:
TypeError
: ifself.dtype
is specified andx.dtype
is notself.dtype
.NotImplementedError
: if_forward
is not implemented.
tf.contrib.distributions.bijectors.Affine.forward_event_shape
forward_event_shape(input_shape)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as forward_event_shape_tensor
. May be only partially defined.
Args:
input_shape
:TensorShape
indicating event-portion shape passed intoforward
function.
Returns:
forward_event_shape_tensor
:TensorShape
indicating event-portion shape after applyingforward
. Possibly unknown.
tf.contrib.distributions.bijectors.Affine.forward_event_shape_tensor
forward_event_shape_tensor(
input_shape,
name='forward_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args:
input_shape
:Tensor
,int32
vector indicating event-portion shape passed intoforward
function.name
: name to give to the op
Returns:
forward_event_shape_tensor
:Tensor
,int32
vector indicating event-portion shape after applyingforward
.
tf.contrib.distributions.bijectors.Affine.forward_log_det_jacobian
forward_log_det_jacobian(
x,
event_ndims,
name='forward_log_det_jacobian'
)
Returns both the forward_log_det_jacobian.
Args:
x
:Tensor
. The input to the "forward" Jacobian determinant evaluation.event_ndims
: Number of dimensions in the probabilistic events being transformed. Must be greater than or equal toself.forward_min_event_ndims
. The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shapex.shape.ndims - event_ndims
dimensions.name
: The name to give this op.
Returns:
Tensor
, if this bijector is injective.
If not injective this is not implemented.
Raises:
TypeError
: ifself.dtype
is specified andy.dtype
is notself.dtype
.NotImplementedError
: if neither_forward_log_det_jacobian
nor {_inverse
,_inverse_log_det_jacobian
} are implemented, or this is a non-injective bijector.
tf.contrib.distributions.bijectors.Affine.inverse
inverse(
y,
name='inverse'
)
Returns the inverse Bijector
evaluation, i.e., X = g^{-1}(Y).
Args:
y
:Tensor
. The input to the "inverse" evaluation.name
: The name to give this op.
Returns:
Tensor
, if this bijector is injective.
If not injective, returns the k-tuple containing the unique
k
points (x1, ..., xk)
such that g(xi) = y
.
Raises:
TypeError
: ifself.dtype
is specified andy.dtype
is notself.dtype
.NotImplementedError
: if_inverse
is not implemented.
tf.contrib.distributions.bijectors.Affine.inverse_event_shape
inverse_event_shape(output_shape)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as inverse_event_shape_tensor
. May be only partially defined.
Args:
output_shape
:TensorShape
indicating event-portion shape passed intoinverse
function.
Returns:
inverse_event_shape_tensor
:TensorShape
indicating event-portion shape after applyinginverse
. Possibly unknown.
tf.contrib.distributions.bijectors.Affine.inverse_event_shape_tensor
inverse_event_shape_tensor(
output_shape,
name='inverse_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args:
output_shape
:Tensor
,int32
vector indicating event-portion shape passed intoinverse
function.name
: name to give to the op
Returns:
inverse_event_shape_tensor
:Tensor
,int32
vector indicating event-portion shape after applyinginverse
.
tf.contrib.distributions.bijectors.Affine.inverse_log_det_jacobian
inverse_log_det_jacobian(
y,
event_ndims,
name='inverse_log_det_jacobian'
)
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y)
. (Recall that: X=g^{-1}(Y)
.)
Note that forward_log_det_jacobian
is the negative of this function,
evaluated at g^{-1}(y)
.
Args:
y
:Tensor
. The input to the "inverse" Jacobian determinant evaluation.event_ndims
: Number of dimensions in the probabilistic events being transformed. Must be greater than or equal toself.inverse_min_event_ndims
. The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shapey.shape.ndims - event_ndims
dimensions.name
: The name to give this op.
Returns:
Tensor
, if this bijector is injective.
If not injective, returns the tuple of local log det
Jacobians, log(det(Dg_i^{-1}(y)))
, where g_i
is the restriction
of g
to the ith
partition Di
.
Raises:
TypeError
: ifself.dtype
is specified andy.dtype
is notself.dtype
.NotImplementedError
: if_inverse_log_det_jacobian
is not implemented.