torch.vander¶
- torch.vander(x, N=None, increasing=False) Tensor ¶
Generates a Vandermonde matrix.
The columns of the output matrix are elementwise powers of the input vector \(x^{(N-1)}, x^{(N-2)}, ..., x^0\). If increasing is True, the order of the columns is reversed \(x^0, x^1, ..., x^{(N-1)}\). Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde.
- Parameters:
x (Tensor) – 1-D input tensor.
N (int, optional) – Number of columns in the output. If N is not specified, a square array is returned \((N = len(x))\).
increasing (bool, optional) – Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
- Returns:
Vandermonde matrix. If increasing is False, the first column is \(x^{(N-1)}\), the second \(x^{(N-2)}\) and so forth. If increasing is True, the columns are \(x^0, x^1, ..., x^{(N-1)}\).
- Return type:
Example:
>>> x = torch.tensor([1, 2, 3, 5]) >>> torch.vander(x) tensor([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> torch.vander(x, N=3) tensor([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> torch.vander(x, N=3, increasing=True) tensor([[ 1, 1, 1], [ 1, 2, 4], [ 1, 3, 9], [ 1, 5, 25]])