Shortcuts

torch.sparse.softmax

torch.sparse.softmax(input, dim, *, dtype=None) Tensor

Applies a softmax function.

Softmax is defined as:

\(\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}\)

where \(i, j\) run over sparse tensor indices and unspecified entries are ignores. This is equivalent to defining unspecified entries as negative infinity so that \(exp(x_k) = 0\) when the entry with index \(k\) has not specified.

It is applied to all slices along dim, and will re-scale them so that the elements lie in the range [0, 1] and sum to 1.

Parameters:
  • input (Tensor) – input

  • dim (int) – A dimension along which softmax will be computed.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources