Shortcuts

Linear

class torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)[source]

Applies an affine linear transformation to the incoming data: \(y = xA^T + b\).

This module supports TensorFloat32.

On certain ROCm devices, when using float16 inputs this module will use different precision for backward.

Parameters:
  • in_features (int) – size of each input sample

  • out_features (int) – size of each output sample

  • bias (bool) – If set to False, the layer will not learn an additive bias. Default: True

Shape:
  • Input: \((*, H_{in})\) where \(*\) means any number of dimensions including none and \(H_{in} = \text{in\_features}\).

  • Output: \((*, H_{out})\) where all but the last dimension are the same shape as the input and \(H_{out} = \text{out\_features}\).

Variables:
  • weight (torch.Tensor) – the learnable weights of the module of shape \((\text{out\_features}, \text{in\_features})\). The values are initialized from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\), where \(k = \frac{1}{\text{in\_features}}\)

  • bias – the learnable bias of the module of shape \((\text{out\_features})\). If bias is True, the values are initialized from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{1}{\text{in\_features}}\)

Examples:

>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources