torch.linalg.matrix_exp¶
- torch.linalg.matrix_exp(A) Tensor ¶
Computes the matrix exponential of a square matrix.
Letting \(\mathbb{K}\) be \(\mathbb{R}\) or \(\mathbb{C}\), this function computes the matrix exponential of \(A \in \mathbb{K}^{n \times n}\), which is defined as
\[\mathrm{matrix\_exp}(A) = \sum_{k=0}^\infty \frac{1}{k!}A^k \in \mathbb{K}^{n \times n}. \]If the matrix \(A\) has eigenvalues \(\lambda_i \in \mathbb{C}\), the matrix \(\mathrm{matrix\_exp}(A)\) has eigenvalues \(e^{\lambda_i} \in \mathbb{C}\).
Supports input of bfloat16, float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if
A
is a batch of matrices then the output has the same batch dimensions.- Parameters:
A (Tensor) – tensor of shape (*, n, n) where * is zero or more batch dimensions.
Example:
>>> A = torch.empty(2, 2, 2) >>> A[0, :, :] = torch.eye(2, 2) >>> A[1, :, :] = 2 * torch.eye(2, 2) >>> A tensor([[[1., 0.], [0., 1.]], [[2., 0.], [0., 2.]]]) >>> torch.linalg.matrix_exp(A) tensor([[[2.7183, 0.0000], [0.0000, 2.7183]], [[7.3891, 0.0000], [0.0000, 7.3891]]]) >>> import math >>> A = torch.tensor([[0, math.pi/3], [-math.pi/3, 0]]) # A is skew-symmetric >>> torch.linalg.matrix_exp(A) # matrix_exp(A) = [[cos(pi/3), sin(pi/3)], [-sin(pi/3), cos(pi/3)]] tensor([[ 0.5000, 0.8660], [-0.8660, 0.5000]])