$darkmode
404 Not Found

404 Not Found


nginx
OpenCV 4.11.0
Open Source Computer Vision
BEGIN_CUSTOM_MATHJAX // END_CUSTOM_MATHJAX
samples/cpp/polar_transforms.cpp

An example using the cv::linearPolar and cv::logPolar operations

#include <iostream>
using namespace cv;
int main( int argc, char** argv )
{
VideoCapture capture;
Mat log_polar_img, lin_polar_img, recovered_log_polar, recovered_lin_polar_img;
CommandLineParser parser(argc, argv, "{@input|0| camera device number or video file path}");
parser.about("\nThis program illustrates usage of Linear-Polar and Log-Polar image transforms\n");
parser.printMessage();
std::string arg = parser.get<std::string>("@input");
if( arg.size() == 1 && isdigit(arg[0]) )
capture.open( arg[0] - '0' );
else
capture.open(samples::findFileOrKeep(arg));
if( !capture.isOpened() )
{
fprintf(stderr,"Could not initialize capturing...\n");
return -1;
}
namedWindow( "Linear-Polar", WINDOW_AUTOSIZE );
namedWindow( "Log-Polar", WINDOW_AUTOSIZE);
namedWindow( "Recovered Linear-Polar", WINDOW_AUTOSIZE);
namedWindow( "Recovered Log-Polar", WINDOW_AUTOSIZE);
moveWindow( "Linear-Polar", 20,20 );
moveWindow( "Log-Polar", 700,20 );
moveWindow( "Recovered Linear-Polar", 20, 350 );
moveWindow( "Recovered Log-Polar", 700, 350 );
Mat src;
for(;;)
{
capture >> src;
if(src.empty() )
break;
Point2f center( (float)src.cols / 2, (float)src.rows / 2 );
double maxRadius = 0.7*min(center.y, center.x);
#if 0 //deprecated
double M = frame.cols / log(maxRadius);
logPolar(frame, log_polar_img, center, M, flags);
linearPolar(frame, lin_polar_img, center, maxRadius, flags);
logPolar(log_polar_img, recovered_log_polar, center, M, flags + WARP_INVERSE_MAP);
linearPolar(lin_polar_img, recovered_lin_polar_img, center, maxRadius, flags + WARP_INVERSE_MAP);
#endif
// direct transform
warpPolar(src, lin_polar_img, Size(),center, maxRadius, flags); // linear Polar
warpPolar(src, log_polar_img, Size(),center, maxRadius, flags + WARP_POLAR_LOG); // semilog Polar
// inverse transform
warpPolar(lin_polar_img, recovered_lin_polar_img, src.size(), center, maxRadius, flags + WARP_INVERSE_MAP);
warpPolar(log_polar_img, recovered_log_polar, src.size(), center, maxRadius, flags + WARP_POLAR_LOG + WARP_INVERSE_MAP);
// Below is the reverse transformation for (rho, phi)->(x, y) :
Mat dst;
if (flags & WARP_POLAR_LOG)
dst = log_polar_img;
else
dst = lin_polar_img;
//get a point from the polar image
int rho = cvRound(dst.cols * 0.75);
int phi = cvRound(dst.rows / 2.0);
double angleRad, magnitude;
double Kangle = dst.rows / CV_2PI;
angleRad = phi / Kangle;
if (flags & WARP_POLAR_LOG)
{
double Klog = dst.cols / std::log(maxRadius);
magnitude = std::exp(rho / Klog);
}
else
{
double Klin = dst.cols / maxRadius;
magnitude = rho / Klin;
}
int x = cvRound(center.x + magnitude * cos(angleRad));
int y = cvRound(center.y + magnitude * sin(angleRad));
drawMarker(src, Point(x, y), Scalar(0, 255, 0));
drawMarker(dst, Point(rho, phi), Scalar(0, 255, 0));
imshow("Src frame", src);
imshow("Log-Polar", log_polar_img);
imshow("Linear-Polar", lin_polar_img);
imshow("Recovered Linear-Polar", recovered_lin_polar_img );
imshow("Recovered Log-Polar", recovered_log_polar );
if( waitKey(10) >= 0 )
break;
}
return 0;
}
MatExpr min(const Mat &a, const Mat &b)
void exp(InputArray src, OutputArray dst)
Calculates the exponent of every array element.
void magnitude(InputArray x, InputArray y, OutputArray magnitude)
Calculates the magnitude of 2D vectors.
void log(InputArray src, OutputArray dst)
Calculates the natural logarithm of every array element.
Point2i Point
Definition: modules/core/include/opencv2/core/types.hpp:209
Size2i Size
Definition: modules/core/include/opencv2/core/types.hpp:370
Scalar_< double > Scalar
Definition: modules/core/include/opencv2/core/types.hpp:709
Point_< float > Point2f
Definition: modules/core/include/opencv2/core/types.hpp:207
Quat< T > cos(const Quat< T > &q)
Quat< T > sin(const Quat< T > &q)
cv::String findFileOrKeep(const cv::String &relative_path, bool silentMode=false)
Definition: utility.hpp:1257
int cvRound(double value)
Rounds floating-point number to the nearest integer.
Definition: fast_math.hpp:200
#define CV_2PI
Definition: cvdef.h:381
@ WINDOW_AUTOSIZE
the user cannot resize the window, the size is constrainted by the image displayed.
Definition: highgui.hpp:144
void imshow(const String &winname, InputArray mat)
Displays an image in the specified window.
int waitKey(int delay=0)
Waits for a pressed key.
void namedWindow(const String &winname, int flags=WINDOW_AUTOSIZE)
Creates a window.
void moveWindow(const String &winname, int x, int y)
Moves the window to the specified position.
void drawMarker(InputOutputArray img, Point position, const Scalar &color, int markerType=MARKER_CROSS, int markerSize=20, int thickness=1, int line_type=8)
Draws a marker on a predefined position in an image.
void warpPolar(InputArray src, OutputArray dst, Size dsize, Point2f center, double maxRadius, int flags)
Remaps an image to polar or semilog-polar coordinates space.
void linearPolar(InputArray src, OutputArray dst, Point2f center, double maxRadius, int flags)
Remaps an image to polar coordinates space.
void logPolar(InputArray src, OutputArray dst, Point2f center, double M, int flags)
Remaps an image to semilog-polar coordinates space.
@ WARP_POLAR_LOG
Remaps an image to/from semilog-polar space.
Definition: imgproc/include/opencv2/imgproc.hpp:287
@ WARP_FILL_OUTLIERS
Definition: imgproc/include/opencv2/imgproc.hpp:270
@ WARP_INVERSE_MAP
Definition: imgproc/include/opencv2/imgproc.hpp:277
@ INTER_LINEAR
Definition: imgproc/include/opencv2/imgproc.hpp:252
int main(int argc, char *argv[])
Definition: highgui_qt.cpp:3
Definition: core/include/opencv2/core.hpp:107