""" ======================== Spectrum representations ======================== The plots show different spectrum representations of a sine signal with additive noise. A (frequency) spectrum of a discrete-time signal is calculated by utilizing the fast Fourier transform (FFT). """ import matplotlib.pyplot as plt import numpy as np np.random.seed(0) dt = 0.01 # sampling interval Fs = 1 / dt # sampling frequency t = np.arange(0, 10, dt) # generate noise: nse = np.random.randn(len(t)) r = np.exp(-t / 0.05) cnse = np.convolve(nse, r) * dt cnse = cnse[:len(t)] s = 0.1 * np.sin(4 * np.pi * t) + cnse # the signal fig = plt.figure(figsize=(7, 7), layout='constrained') axs = fig.subplot_mosaic([["signal", "signal"], ["magnitude", "log_magnitude"], ["phase", "angle"]]) # plot time signal: axs["signal"].set_title("Signal") axs["signal"].plot(t, s, color='C0') axs["signal"].set_xlabel("Time (s)") axs["signal"].set_ylabel("Amplitude") # plot different spectrum types: axs["magnitude"].set_title("Magnitude Spectrum") axs["magnitude"].magnitude_spectrum(s, Fs=Fs, color='C1') axs["log_magnitude"].set_title("Log. Magnitude Spectrum") axs["log_magnitude"].magnitude_spectrum(s, Fs=Fs, scale='dB', color='C1') axs["phase"].set_title("Phase Spectrum ") axs["phase"].phase_spectrum(s, Fs=Fs, color='C2') axs["angle"].set_title("Angle Spectrum") axs["angle"].angle_spectrum(s, Fs=Fs, color='C2') plt.show() # %% # .. tags:: # # domain: signal-processing # plot-type: line # level: beginner