""" =============== Axes box aspect =============== This demo shows how to set the aspect of an Axes box directly via `~.Axes.set_box_aspect`. The box aspect is the ratio between Axes height and Axes width in physical units, independent of the data limits. This is useful to e.g. produce a square plot, independent of the data it contains, or to have a usual plot with the same axes dimensions next to an image plot with fixed (data-)aspect. The following lists a few use cases for `~.Axes.set_box_aspect`. """ # %% # A square Axes, independent of data # ---------------------------------- # # Produce a square Axes, no matter what the data limits are. import matplotlib.pyplot as plt import numpy as np fig1, ax = plt.subplots() ax.set_xlim(300, 400) ax.set_box_aspect(1) plt.show() # %% # Shared square Axes # ------------------ # # Produce shared subplots that are squared in size. # fig2, (ax, ax2) = plt.subplots(ncols=2, sharey=True) ax.plot([1, 5], [0, 10]) ax2.plot([100, 500], [10, 15]) ax.set_box_aspect(1) ax2.set_box_aspect(1) plt.show() # %% # Square twin Axes # ---------------- # # Produce a square Axes, with a twin Axes. The twinned Axes takes over the # box aspect of the parent. # fig3, ax = plt.subplots() ax2 = ax.twinx() ax.plot([0, 10]) ax2.plot([12, 10]) ax.set_box_aspect(1) plt.show() # %% # Normal plot next to image # ------------------------- # # When creating an image plot with fixed data aspect and the default # ``adjustable="box"`` next to a normal plot, the Axes would be unequal in # height. `~.Axes.set_box_aspect` provides an easy solution to that by allowing # to have the normal plot's Axes use the images dimensions as box aspect. # # This example also shows that *constrained layout* interplays nicely with # a fixed box aspect. fig4, (ax, ax2) = plt.subplots(ncols=2, layout="constrained") np.random.seed(19680801) # Fixing random state for reproducibility im = np.random.rand(16, 27) ax.imshow(im) ax2.plot([23, 45]) ax2.set_box_aspect(im.shape[0]/im.shape[1]) plt.show() # %% # Square joint/marginal plot # -------------------------- # # It may be desirable to show marginal distributions next to a plot of joint # data. The following creates a square plot with the box aspect of the # marginal Axes being equal to the width- and height-ratios of the gridspec. # This ensures that all Axes align perfectly, independent on the size of the # figure. fig5, axs = plt.subplots(2, 2, sharex="col", sharey="row", gridspec_kw=dict(height_ratios=[1, 3], width_ratios=[3, 1])) axs[0, 1].set_visible(False) axs[0, 0].set_box_aspect(1/3) axs[1, 0].set_box_aspect(1) axs[1, 1].set_box_aspect(3/1) np.random.seed(19680801) # Fixing random state for reproducibility x, y = np.random.randn(2, 400) * [[.5], [180]] axs[1, 0].scatter(x, y) axs[0, 0].hist(x) axs[1, 1].hist(y, orientation="horizontal") plt.show() # %% # Set data aspect with box aspect # ------------------------------- # # When setting the box aspect, one may still set the data aspect as well. # Here we create an Axes with a box twice as long as it is tall and use # an "equal" data aspect for its contents, i.e. the circle actually # stays circular. fig6, ax = plt.subplots() ax.add_patch(plt.Circle((5, 3), 1)) ax.set_aspect("equal", adjustable="datalim") ax.set_box_aspect(0.5) ax.autoscale() plt.show() # %% # Box aspect for many subplots # ---------------------------- # # It is possible to pass the box aspect to an Axes at initialization. The # following creates a 2 by 3 subplot grid with all square Axes. fig7, axs = plt.subplots(2, 3, subplot_kw=dict(box_aspect=1), sharex=True, sharey=True, layout="constrained") for i, ax in enumerate(axs.flat): ax.scatter(i % 3, -((i // 3) - 0.5)*200, c=[plt.cm.hsv(i / 6)], s=300) plt.show() # %% # # .. admonition:: References # # The use of the following functions, methods, classes and modules is shown # in this example: # # - `matplotlib.axes.Axes.set_box_aspect` # # .. tags:: # # component: axes # styling: size # level: beginner