{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Layer images with alpha blending\n\nLayer images above one another using alpha blending\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\nimport numpy as np\n\n\ndef func3(x, y):\n return (1 - x / 2 + x**5 + y**3) * np.exp(-(x**2 + y**2))\n\n\n# make these smaller to increase the resolution\ndx, dy = 0.05, 0.05\n\nx = np.arange(-3.0, 3.0, dx)\ny = np.arange(-3.0, 3.0, dy)\nX, Y = np.meshgrid(x, y)\n\n# when layering multiple images, the images need to have the same\n# extent. This does not mean they need to have the same shape, but\n# they both need to render to the same coordinate system determined by\n# xmin, xmax, ymin, ymax. Note if you use different interpolations\n# for the images their apparent extent could be different due to\n# interpolation edge effects\n\nextent = np.min(x), np.max(x), np.min(y), np.max(y)\nfig = plt.figure(frameon=False)\n\nZ1 = np.add.outer(range(8), range(8)) % 2 # chessboard\nim1 = plt.imshow(Z1, cmap=plt.cm.gray, interpolation='nearest',\n extent=extent)\n\nZ2 = func3(X, Y)\n\nim2 = plt.imshow(Z2, cmap=plt.cm.viridis, alpha=.9, interpolation='bilinear',\n extent=extent)\n\nplt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ".. admonition:: References\n\n The use of the following functions, methods, classes and modules is shown\n in this example:\n\n - `matplotlib.axes.Axes.imshow` / `matplotlib.pyplot.imshow`\n\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 0 }