""" ================ Trigradient Demo ================ Demonstrates computation of gradient with `matplotlib.tri.CubicTriInterpolator`. """ import matplotlib.pyplot as plt import numpy as np from matplotlib.tri import (CubicTriInterpolator, Triangulation, UniformTriRefiner) # ---------------------------------------------------------------------------- # Electrical potential of a dipole # ---------------------------------------------------------------------------- def dipole_potential(x, y): """The electric dipole potential V, at position *x*, *y*.""" r_sq = x**2 + y**2 theta = np.arctan2(y, x) z = np.cos(theta)/r_sq return (np.max(z) - z) / (np.max(z) - np.min(z)) # ---------------------------------------------------------------------------- # Creating a Triangulation # ---------------------------------------------------------------------------- # First create the x and y coordinates of the points. n_angles = 30 n_radii = 10 min_radius = 0.2 radii = np.linspace(min_radius, 0.95, n_radii) angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False) angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1) angles[:, 1::2] += np.pi / n_angles x = (radii*np.cos(angles)).flatten() y = (radii*np.sin(angles)).flatten() V = dipole_potential(x, y) # Create the Triangulation; no triangles specified so Delaunay triangulation # created. triang = Triangulation(x, y) # Mask off unwanted triangles. triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1), y[triang.triangles].mean(axis=1)) < min_radius) # ---------------------------------------------------------------------------- # Refine data - interpolates the electrical potential V # ---------------------------------------------------------------------------- refiner = UniformTriRefiner(triang) tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3) # ---------------------------------------------------------------------------- # Computes the electrical field (Ex, Ey) as gradient of electrical potential # ---------------------------------------------------------------------------- tci = CubicTriInterpolator(triang, -V) # Gradient requested here at the mesh nodes but could be anywhere else: (Ex, Ey) = tci.gradient(triang.x, triang.y) E_norm = np.sqrt(Ex**2 + Ey**2) # ---------------------------------------------------------------------------- # Plot the triangulation, the potential iso-contours and the vector field # ---------------------------------------------------------------------------- fig, ax = plt.subplots() ax.set_aspect('equal') # Enforce the margins, and enlarge them to give room for the vectors. ax.use_sticky_edges = False ax.margins(0.07) ax.triplot(triang, color='0.8') levels = np.arange(0., 1., 0.01) ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap='hot', linewidths=[2.0, 1.0, 1.0, 1.0]) # Plots direction of the electrical vector field ax.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm, units='xy', scale=10., zorder=3, color='blue', width=0.007, headwidth=3., headlength=4.) ax.set_title('Gradient plot: an electrical dipole') plt.show() # %% # # .. admonition:: References # # The use of the following functions, methods, classes and modules is shown # in this example: # # - `matplotlib.axes.Axes.tricontour` / `matplotlib.pyplot.tricontour` # - `matplotlib.axes.Axes.triplot` / `matplotlib.pyplot.triplot` # - `matplotlib.tri` # - `matplotlib.tri.Triangulation` # - `matplotlib.tri.CubicTriInterpolator` # - `matplotlib.tri.CubicTriInterpolator.gradient` # - `matplotlib.tri.UniformTriRefiner` # - `matplotlib.axes.Axes.quiver` / `matplotlib.pyplot.quiver`