{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Simple axis pad\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\nimport numpy as np\n\nfrom matplotlib.projections import PolarAxes\nfrom matplotlib.transforms import Affine2D\nimport mpl_toolkits.axisartist as axisartist\nimport mpl_toolkits.axisartist.angle_helper as angle_helper\nimport mpl_toolkits.axisartist.grid_finder as grid_finder\nfrom mpl_toolkits.axisartist.grid_helper_curvelinear import \\\n GridHelperCurveLinear\n\n\ndef setup_axes(fig, rect):\n \"\"\"Polar projection, but in a rectangular box.\"\"\"\n\n # see demo_curvelinear_grid.py for details\n tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform(\n apply_theta_transforms=False)\n\n extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,\n lon_cycle=360,\n lat_cycle=None,\n lon_minmax=None,\n lat_minmax=(0, np.inf),\n )\n\n grid_locator1 = angle_helper.LocatorDMS(12)\n grid_locator2 = grid_finder.MaxNLocator(5)\n\n tick_formatter1 = angle_helper.FormatterDMS()\n\n grid_helper = GridHelperCurveLinear(tr,\n extreme_finder=extreme_finder,\n grid_locator1=grid_locator1,\n grid_locator2=grid_locator2,\n tick_formatter1=tick_formatter1\n )\n\n ax1 = fig.add_subplot(\n rect, axes_class=axisartist.Axes, grid_helper=grid_helper)\n ax1.axis[:].set_visible(False)\n ax1.set_aspect(1.)\n ax1.set_xlim(-5, 12)\n ax1.set_ylim(-5, 10)\n\n return ax1\n\n\ndef add_floating_axis1(ax1):\n ax1.axis[\"lat\"] = axis = ax1.new_floating_axis(0, 30)\n axis.label.set_text(r\"$\\theta = 30^{\\circ}$\")\n axis.label.set_visible(True)\n\n return axis\n\n\ndef add_floating_axis2(ax1):\n ax1.axis[\"lon\"] = axis = ax1.new_floating_axis(1, 6)\n axis.label.set_text(r\"$r = 6$\")\n axis.label.set_visible(True)\n\n return axis\n\n\nfig = plt.figure(figsize=(9, 3.))\nfig.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.99,\n wspace=0.01, hspace=0.01)\n\n\ndef ann(ax1, d):\n if plt.rcParams[\"text.usetex\"]:\n d = d.replace(\"_\", r\"\\_\")\n\n ax1.annotate(d, (0.5, 1), (5, -5),\n xycoords=\"axes fraction\", textcoords=\"offset points\",\n va=\"top\", ha=\"center\")\n\n\nax1 = setup_axes(fig, rect=141)\naxis = add_floating_axis1(ax1)\nann(ax1, r\"default\")\n\nax1 = setup_axes(fig, rect=142)\naxis = add_floating_axis1(ax1)\naxis.major_ticklabels.set_pad(10)\nann(ax1, r\"ticklabels.set_pad(10)\")\n\nax1 = setup_axes(fig, rect=143)\naxis = add_floating_axis1(ax1)\naxis.label.set_pad(20)\nann(ax1, r\"label.set_pad(20)\")\n\nax1 = setup_axes(fig, rect=144)\naxis = add_floating_axis1(ax1)\naxis.major_ticks.set_tick_out(True)\nann(ax1, \"ticks.set_tick_out(True)\")\n\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 0 }