{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Animated 3D random walk\n\nOutput generated via `matplotlib.animation.Animation.to_jshtml`.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\nimport numpy as np\n\nimport matplotlib.animation as animation\n\n# Fixing random state for reproducibility\nnp.random.seed(19680801)\n\n\ndef random_walk(num_steps, max_step=0.05):\n \"\"\"Return a 3D random walk as (num_steps, 3) array.\"\"\"\n start_pos = np.random.random(3)\n steps = np.random.uniform(-max_step, max_step, size=(num_steps, 3))\n walk = start_pos + np.cumsum(steps, axis=0)\n return walk\n\n\ndef update_lines(num, walks, lines):\n for line, walk in zip(lines, walks):\n line.set_data_3d(walk[:num, :].T)\n return lines\n\n\n# Data: 40 random walks as (num_steps, 3) arrays\nnum_steps = 30\nwalks = [random_walk(num_steps) for index in range(40)]\n\n# Attaching 3D axis to the figure\nfig = plt.figure()\nax = fig.add_subplot(projection=\"3d\")\n\n# Create lines initially without data\nlines = [ax.plot([], [], [])[0] for _ in walks]\n\n# Setting the Axes properties\nax.set(xlim3d=(0, 1), xlabel='X')\nax.set(ylim3d=(0, 1), ylabel='Y')\nax.set(zlim3d=(0, 1), zlabel='Z')\n\n# Creating the Animation object\nani = animation.FuncAnimation(\n fig, update_lines, num_steps, fargs=(walks, lines), interval=100)\n\nplt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ".. tags:: animation, plot-type: 3D\n\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 0 }