find_package ------------ .. |FIND_XXX| replace:: find_package .. |FIND_ARGS_XXX| replace:: .. |FIND_XXX_REGISTRY_VIEW_DEFAULT| replace:: ``TARGET`` .. |CMAKE_FIND_ROOT_PATH_MODE_XXX| replace:: :variable:`CMAKE_FIND_ROOT_PATH_MODE_PACKAGE` .. only:: html .. contents:: .. note:: The :guide:`Using Dependencies Guide` provides a high-level introduction to this general topic. It provides a broader overview of where the ``find_package()`` command fits into the bigger picture, including its relationship to the :module:`FetchContent` module. The guide is recommended pre-reading before moving on to the details below. Find a package (usually provided by something external to the project), and load its package-specific details. Calls to this command can also be intercepted by :ref:`dependency providers `. Typical Usage ^^^^^^^^^^^^^ Most calls to ``find_package()`` typically have the following form: .. code-block:: cmake find_package( [] [REQUIRED] [COMPONENTS ...]) The ```` is the only mandatory argument. The ```` is often omitted, and ``REQUIRED`` should be given if the project cannot be configured successfully without the package. Some more complicated packages support components which can be selected with the ``COMPONENTS`` keyword, but most packages don't have that level of complexity. The above is a reduced form of the `basic signature`_. Where possible, projects should find packages using this form. This reduces complexity and maximizes the ways in which the package can be found or provided. Understanding the `basic signature`_ should be enough for general usage of ``find_package()``. Project maintainers who intend to provide a package configuration file should understand the bigger picture, as explained in :ref:`Full Signature` and all subsequent sections on this page. Search Modes ^^^^^^^^^^^^ The command has a few modes by which it searches for packages: **Module mode** In this mode, CMake searches for a file called ``Find.cmake``, looking first in the locations listed in the :variable:`CMAKE_MODULE_PATH`, then among the :ref:`Find Modules` provided by the CMake installation. If the file is found, it is read and processed by CMake. It is responsible for finding the package, checking the version, and producing any needed messages. Some Find modules provide limited or no support for versioning; check the Find module's documentation. The ``Find.cmake`` file is not typically provided by the package itself. Rather, it is normally provided by something external to the package, such as the operating system, CMake itself, or even the project from which the ``find_package()`` command was called. Being externally provided, :ref:`Find Modules` tend to be heuristic in nature and are susceptible to becoming out-of-date. They typically search for certain libraries, files and other package artifacts. Module mode is only supported by the :ref:`basic command signature `. **Config mode** In this mode, CMake searches for a file called ``-config.cmake`` or ``Config.cmake``. It will also look for ``-config-version.cmake`` or ``ConfigVersion.cmake`` if version details were specified (see :ref:`version selection` for an explanation of how these separate version files are used). .. note:: If the experimental ``CMAKE_EXPERIMENTAL_FIND_CPS_PACKAGES`` is enabled, files named ``.cps`` and ``.cps`` are also considered. These files provide package information according to the |CPS|_ (CPS), which is more portable than CMake script. Aside from any explicitly noted exceptions, any references to "config files", "config mode", "package configuration files", and so forth refer equally to both CPS and CMake-script files. This functionality is a work in progress, and some features may be missing. Search is implemented in a manner that will tend to prefer |CPS| files over CMake-script config files in most cases. Specifying ``CONFIGS`` suppresses consideration of CPS files. In config mode, the command can be given a list of names to search for as package names. The locations where CMake searches for the config and version files is considerably more complicated than for Module mode (see :ref:`search procedure`). The config and version files are typically installed as part of the package, so they tend to be more reliable than Find modules. They usually contain direct knowledge of the package contents, so no searching or heuristics are needed within the config or version files themselves. Config mode is supported by both the :ref:`basic ` and :ref:`full ` command signatures. **FetchContent redirection mode** .. versionadded:: 3.24 A call to ``find_package()`` can be redirected internally to a package provided by the :module:`FetchContent` module. To the caller, the behavior will appear similar to Config mode, except that the search logic is by-passed and the component information is not used. See :command:`FetchContent_Declare` and :command:`FetchContent_MakeAvailable` for further details. When not redirected to a package provided by :module:`FetchContent`, the command arguments determine whether Module or Config mode is used. When the `basic signature`_ is used, the command searches in Module mode first. If the package is not found, the search falls back to Config mode. A user may set the :variable:`CMAKE_FIND_PACKAGE_PREFER_CONFIG` variable to true to reverse the priority and direct CMake to search using Config mode first before falling back to Module mode. The basic signature can also be forced to use only Module mode with a ``MODULE`` keyword. If the `full signature`_ is used, the command only searches in Config mode. .. _`basic signature`: Basic Signature ^^^^^^^^^^^^^^^ .. code-block:: cmake find_package( [version] [EXACT] [QUIET] [MODULE] [REQUIRED] [[COMPONENTS] [components...]] [OPTIONAL_COMPONENTS components...] [REGISTRY_VIEW (64|32|64_32|32_64|HOST|TARGET|BOTH)] [GLOBAL] [NO_POLICY_SCOPE] [BYPASS_PROVIDER]) The basic signature is supported by both Module and Config modes. The ``MODULE`` keyword implies that only Module mode can be used to find the package, with no fallback to Config mode. Regardless of the mode used, a ``_FOUND`` variable will be set to indicate whether the package was found. When the package is found, package-specific information may be provided through other variables and :ref:`Imported Targets` documented by the package itself. The ``QUIET`` option disables informational messages, including those indicating that the package cannot be found if it is not ``REQUIRED``. The ``REQUIRED`` option stops processing with an error message if the package cannot be found. A package-specific list of required components may be listed after the ``COMPONENTS`` keyword. If any of these components are not able to be satisfied, the package overall is considered to be not found. If the ``REQUIRED`` option is also present, this is treated as a fatal error, otherwise execution still continues. As a form of shorthand, if the ``REQUIRED`` option is present, the ``COMPONENTS`` keyword can be omitted and the required components can be listed directly after ``REQUIRED``. Additional optional components may be listed after ``OPTIONAL_COMPONENTS``. If these cannot be satisfied, the package overall can still be considered found, as long as all required components are satisfied. The set of available components and their meaning are defined by the target package: * For CMake-script package configuration files, it is formally up to the target package how to interpret the component information given to it, but it should follow the expectations stated above. For calls where no components are specified, there is no single expected behavior and target packages should clearly define what occurs in such cases. Common arrangements include assuming it should find all components, no components or some well-defined subset of the available components. * |CPS| packages consist of a root configuration file and zero or more appendices, each of which provide components and may have dependencies. CMake always attempts to load the root configuration file. Appendices are only loaded if their dependencies can be satisfied, and if they either provide requested components, or if no components were requested. If the dependencies of an appendix providing a required component cannot be satisfied, the package is considered not found. Otherwise, that appendix is ignored. .. versionadded:: 3.24 The ``REGISTRY_VIEW`` keyword specifies which registry views should be queried. This keyword is only meaningful on ``Windows`` platforms and will be ignored on all others. Formally, it is up to the target package how to interpret the registry view information given to it. .. versionadded:: 3.24 Specifying the ``GLOBAL`` keyword will promote all imported targets to a global scope in the importing project. Alternatively, this functionality can be enabled by setting the :variable:`CMAKE_FIND_PACKAGE_TARGETS_GLOBAL` variable. .. _FIND_PACKAGE_VERSION_FORMAT: The ``[version]`` argument requests a version with which the package found should be compatible. There are two possible forms in which it may be specified: * A single version with the format ``major[.minor[.patch[.tweak]]]``, where each component is a numeric value. * A version range with the format ``versionMin...[<]versionMax`` where ``versionMin`` and ``versionMax`` have the same format and constraints on components being integers as the single version. By default, both end points are included. By specifying ``<``, the upper end point will be excluded. Version ranges are only supported with CMake 3.19 or later. .. note:: With the exception of CPS packages, version support is currently provided only on a package-by-package basis. When a version range is specified but the package is only designed to expect a single version, the package will ignore the upper end point of the range and only take the single version at the lower end of the range into account. Non-CPS packages that do support version ranges do so in a manner that is determined by the individual package. See the `Version Selection`_ section below for details and important caveats. The ``EXACT`` option requests that the version be matched exactly. This option is incompatible with the specification of a version range. If no ``[version]`` and/or component list is given to a recursive invocation inside a find-module, the corresponding arguments are forwarded automatically from the outer call (including the ``EXACT`` flag for ``[version]``). See the :command:`cmake_policy` command documentation for discussion of the ``NO_POLICY_SCOPE`` option. .. versionadded:: 3.24 The ``BYPASS_PROVIDER`` keyword is only allowed when ``find_package()`` is being called by a :ref:`dependency provider `. It can be used by providers to call the built-in ``find_package()`` implementation directly and prevent that call from being re-routed back to itself. Future versions of CMake may detect attempts to use this keyword from places other than a dependency provider and halt with a fatal error. .. _`full signature`: Full Signature ^^^^^^^^^^^^^^ .. code-block:: cmake find_package( [version] [EXACT] [QUIET] [REQUIRED] [[COMPONENTS] [components...]] [OPTIONAL_COMPONENTS components...] [CONFIG|NO_MODULE] [GLOBAL] [NO_POLICY_SCOPE] [BYPASS_PROVIDER] [NAMES name1 [name2 ...]] [CONFIGS config1 [config2 ...]] [HINTS path1 [path2 ...]] [PATHS path1 [path2 ...]] [REGISTRY_VIEW (64|32|64_32|32_64|HOST|TARGET|BOTH)] [PATH_SUFFIXES suffix1 [suffix2 ...]] [NO_DEFAULT_PATH] [NO_PACKAGE_ROOT_PATH] [NO_CMAKE_PATH] [NO_CMAKE_ENVIRONMENT_PATH] [NO_SYSTEM_ENVIRONMENT_PATH] [NO_CMAKE_PACKAGE_REGISTRY] [NO_CMAKE_BUILDS_PATH] # Deprecated; does nothing. [NO_CMAKE_SYSTEM_PATH] [NO_CMAKE_INSTALL_PREFIX] [NO_CMAKE_SYSTEM_PACKAGE_REGISTRY] [CMAKE_FIND_ROOT_PATH_BOTH | ONLY_CMAKE_FIND_ROOT_PATH | NO_CMAKE_FIND_ROOT_PATH]) The ``CONFIG`` option, the synonymous ``NO_MODULE`` option, or the use of options not specified in the `basic signature`_ all enforce pure Config mode. In pure Config mode, the command skips Module mode search and proceeds at once with Config mode search. Config mode search attempts to locate a configuration file provided by the package to be found. A cache entry called ``_DIR`` is created to hold the directory containing the file. By default, the command searches for a package with the name ````. If the ``NAMES`` option is given, the names following it are used instead of ````. The names are also considered when determining whether to redirect the call to a package provided by :module:`FetchContent`. The command searches for a file called ``Config.cmake`` or ``-config.cmake`` for each name specified. A replacement set of possible configuration file names may be given using the ``CONFIGS`` option. The :ref:`search procedure` is specified below. Once found, any :ref:`version constraint ` is checked, and if satisfied, the configuration file is read and processed by CMake. Since the file is provided by the package it already knows the location of package contents. The full path to the configuration file is stored in the CMake variable ``_CONFIG``. .. note:: If the experimental ``CMAKE_EXPERIMENTAL_FIND_CPS_PACKAGES`` is enabled, files named ``.cps`` and ``.cps`` are also considered, unless ``CONFIGS`` is given. All configuration files which have been considered by CMake while searching for the package with an appropriate version are stored in the ``_CONSIDERED_CONFIGS`` variable, and the associated versions in the ``_CONSIDERED_VERSIONS`` variable. If the package configuration file cannot be found, CMake will generate an error describing the problem unless the ``QUIET`` argument is specified. If ``REQUIRED`` is specified and the package is not found, a fatal error is generated and the configure step stops executing. If ``_DIR`` has been set to a directory not containing a configuration file, CMake will ignore it and search from scratch. Package maintainers providing package configuration files are encouraged to name and install them such that the :ref:`search procedure` outlined below will find them without requiring use of additional options. .. _`search procedure`: Config Mode Search Procedure ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. note:: When Config mode is used, this search procedure is applied regardless of whether the :ref:`full ` or :ref:`basic ` signature was given. .. versionadded:: 3.24 All calls to ``find_package()`` (even in Module mode) first look for a config package file in the :variable:`CMAKE_FIND_PACKAGE_REDIRECTS_DIR` directory. The :module:`FetchContent` module, or even the project itself, may write files to that location to redirect ``find_package()`` calls to content already provided by the project. If no config package file is found in that location, the search proceeds with the logic described below. CMake constructs a set of possible installation prefixes for the package. Under each prefix several directories are searched for a configuration file. The tables below show the directories searched. Each entry is meant for installation trees following Windows (``W``), UNIX (``U``), or Apple (``A``) conventions: ==================================================================== ========== Entry Convention ==================================================================== ========== ``//cps/`` [#p2]_ W ``//*/cps/`` [#p2]_ W ``/cps//`` [#p2]_ W ``/cps//*/`` [#p2]_ W ``/cps/`` [#p2]_ W ``/`` W ``/(cmake|CMake)/`` W ``/*/`` W ``/*/(cmake|CMake)/`` W ``/*/(cmake|CMake)/*/`` [#p1]_ W ``/(lib/|lib*|share)/cps//`` [#p2]_ U ``/(lib/|lib*|share)/cps//*/`` [#p2]_ U ``/(lib/|lib*|share)/cps/`` [#p2]_ U ``/(lib/|lib*|share)/cmake/*/`` U ``/(lib/|lib*|share)/*/`` U ``/(lib/|lib*|share)/*/(cmake|CMake)/`` U ``/*/(lib/|lib*|share)/cmake/*/`` W/U ``/*/(lib/|lib*|share)/*/`` W/U ``/*/(lib/|lib*|share)/*/(cmake|CMake)/`` W/U ==================================================================== ========== .. [#p1] .. versionadded:: 3.25 .. [#p2] .. versionadded:: 4.0 On systems supporting macOS :prop_tgt:`FRAMEWORK` and :prop_tgt:`BUNDLE`, the following directories are searched for Frameworks or Application Bundles containing a configuration file: =============================================================== ========== Entry Convention =============================================================== ========== ``/.framework/Versions/*/Resources/CPS/`` [#p3]_ A ``/.framework/Resources/CPS/`` [#p3]_ A ``/.framework/Resources/`` A ``/.framework/Resources/CMake/`` A ``/.framework/Versions/*/Resources/`` A ``/.framework/Versions/*/Resources/CMake/`` A ``/.app/Contents/Resources/CPS/`` [#p3]_ A ``/.app/Contents/Resources/`` A ``/.app/Contents/Resources/CMake/`` A =============================================================== ========== .. [#p3] .. versionadded:: 4.0 When searching the above paths, ``find_package`` will only look for ``.cps`` files in search paths which contain ``/cps/``, and will only look for ``.cmake`` files otherwise. (This only applies to the paths as specified and does not consider the contents of ```` or ````.) In all cases the ```` is treated as case-insensitive and corresponds to any of the names specified (```` or names given by ``NAMES``). If at least one compiled language has been enabled, the architecture-specific ``lib/`` and ``lib*`` directories may be searched based on the compiler's target architecture, in the following order: ``lib/`` Searched if the :variable:`CMAKE_LIBRARY_ARCHITECTURE` variable is set. ``lib64`` Searched on 64 bit platforms (:variable:`CMAKE_SIZEOF_VOID_P` is 8) and the :prop_gbl:`FIND_LIBRARY_USE_LIB64_PATHS` property is set to ``TRUE``. ``lib32`` Searched on 32 bit platforms (:variable:`CMAKE_SIZEOF_VOID_P` is 4) and the :prop_gbl:`FIND_LIBRARY_USE_LIB32_PATHS` property is set to ``TRUE``. ``libx32`` Searched on platforms using the x32 ABI if the :prop_gbl:`FIND_LIBRARY_USE_LIBX32_PATHS` property is set to ``TRUE``. ``lib`` Always searched. .. versionchanged:: 3.24 On ``Windows`` platform, it is possible to include registry queries as part of the directories specified through ``HINTS`` and ``PATHS`` keywords, using a :ref:`dedicated syntax `. Such specifications will be ignored on all other platforms. .. versionadded:: 3.24 ``REGISTRY_VIEW`` can be specified to manage ``Windows`` registry queries specified as part of ``PATHS`` and ``HINTS``. .. include:: FIND_XXX_REGISTRY_VIEW.txt If ``PATH_SUFFIXES`` is specified, the suffixes are appended to each (``W``) or (``U``) directory entry one-by-one. This set of directories is intended to work in cooperation with projects that provide configuration files in their installation trees. Directories above marked with (``W``) are intended for installations on Windows where the prefix may point at the top of an application's installation directory. Those marked with (``U``) are intended for installations on UNIX platforms where the prefix is shared by multiple packages. This is merely a convention, so all (``W``) and (``U``) directories are still searched on all platforms. Directories marked with (``A``) are intended for installations on Apple platforms. The :variable:`CMAKE_FIND_FRAMEWORK` and :variable:`CMAKE_FIND_APPBUNDLE` variables determine the order of preference. .. warning:: Setting :variable:`CMAKE_FIND_FRAMEWORK` or :variable:`CMAKE_FIND_APPBUNDLE` to values other than ``FIRST`` (the default) will cause CMake to search for |CPS| files in an order that is different from the order set forth in the specification. The set of installation prefixes is constructed using the following steps. If ``NO_DEFAULT_PATH`` is specified all ``NO_*`` options are enabled. 1. Search prefixes unique to the current ```` being found. See policy :policy:`CMP0074`. .. versionadded:: 3.12 Specifically, search prefixes specified by the following variables, in order: a. :variable:`_ROOT` CMake variable, where ```` is the case-preserved package name. b. :variable:`_ROOT` CMake variable, where ```` is the upper-cased package name. See policy :policy:`CMP0144`. .. versionadded:: 3.27 c. :envvar:`_ROOT` environment variable, where ```` is the case-preserved package name. d. :envvar:`_ROOT` environment variable, where ```` is the upper-cased package name. See policy :policy:`CMP0144`. .. versionadded:: 3.27 The package root variables are maintained as a stack so if called from within a find module, root paths from the parent's find module will also be searched after paths for the current package. This can be skipped if ``NO_PACKAGE_ROOT_PATH`` is passed or by setting the :variable:`CMAKE_FIND_USE_PACKAGE_ROOT_PATH` to ``FALSE``. 2. Search paths specified in CMake-specific cache variables. These are intended to be used on the command line with a :option:`-DVAR=VALUE `. The values are interpreted as :ref:`semicolon-separated lists `. This can be skipped if ``NO_CMAKE_PATH`` is passed or by setting the :variable:`CMAKE_FIND_USE_CMAKE_PATH` to ``FALSE``: * :variable:`CMAKE_PREFIX_PATH` * :variable:`CMAKE_FRAMEWORK_PATH` * :variable:`CMAKE_APPBUNDLE_PATH` 3. Search paths specified in CMake-specific environment variables. These are intended to be set in the user's shell configuration, and therefore use the host's native path separator (``;`` on Windows and ``:`` on UNIX). This can be skipped if ``NO_CMAKE_ENVIRONMENT_PATH`` is passed or by setting the :variable:`CMAKE_FIND_USE_CMAKE_ENVIRONMENT_PATH` to ``FALSE``: * ``_DIR`` * :envvar:`CMAKE_PREFIX_PATH` * :envvar:`CMAKE_FRAMEWORK_PATH` * :envvar:`CMAKE_APPBUNDLE_PATH` 4. Search paths specified by the ``HINTS`` option. These should be paths computed by system introspection, such as a hint provided by the location of another item already found. Hard-coded guesses should be specified with the ``PATHS`` option. 5. Search the standard system environment variables. This can be skipped if ``NO_SYSTEM_ENVIRONMENT_PATH`` is passed or by setting the :variable:`CMAKE_FIND_USE_SYSTEM_ENVIRONMENT_PATH` to ``FALSE``. Path entries ending in ``/bin`` or ``/sbin`` are automatically converted to their parent directories: * ``PATH`` 6. Search paths stored in the CMake :ref:`User Package Registry`. This can be skipped if ``NO_CMAKE_PACKAGE_REGISTRY`` is passed or by setting the variable :variable:`CMAKE_FIND_USE_PACKAGE_REGISTRY` to ``FALSE`` or the deprecated variable :variable:`CMAKE_FIND_PACKAGE_NO_PACKAGE_REGISTRY` to ``TRUE``. See the :manual:`cmake-packages(7)` manual for details on the user package registry. 7. Search CMake variables defined in the Platform files for the current system. The searching of :variable:`CMAKE_INSTALL_PREFIX` and :variable:`CMAKE_STAGING_PREFIX` can be skipped if ``NO_CMAKE_INSTALL_PREFIX`` is passed or by setting the :variable:`CMAKE_FIND_USE_INSTALL_PREFIX` to ``FALSE``. All these locations can be skipped if ``NO_CMAKE_SYSTEM_PATH`` is passed or by setting the :variable:`CMAKE_FIND_USE_CMAKE_SYSTEM_PATH` to ``FALSE``: * :variable:`CMAKE_SYSTEM_PREFIX_PATH` * :variable:`CMAKE_SYSTEM_FRAMEWORK_PATH` * :variable:`CMAKE_SYSTEM_APPBUNDLE_PATH` The platform paths that these variables contain are locations that typically include installed software. An example being ``/usr/local`` for UNIX based platforms. 8. Search paths stored in the CMake :ref:`System Package Registry`. This can be skipped if ``NO_CMAKE_SYSTEM_PACKAGE_REGISTRY`` is passed or by setting the :variable:`CMAKE_FIND_USE_SYSTEM_PACKAGE_REGISTRY` variable to ``FALSE`` or the deprecated variable :variable:`CMAKE_FIND_PACKAGE_NO_SYSTEM_PACKAGE_REGISTRY` to ``TRUE``. See the :manual:`cmake-packages(7)` manual for details on the system package registry. 9. Search paths specified by the ``PATHS`` option. These are typically hard-coded guesses. The :variable:`CMAKE_IGNORE_PATH`, :variable:`CMAKE_IGNORE_PREFIX_PATH`, :variable:`CMAKE_SYSTEM_IGNORE_PATH` and :variable:`CMAKE_SYSTEM_IGNORE_PREFIX_PATH` variables can also cause some of the above locations to be ignored. Paths are searched in the order described above. The first viable package configuration file found is used, even if a newer version of the package resides later in the list of search paths. For search paths which contain glob expressions (``*``), the order in which directories matching the glob are searched is unspecified unless the :variable:`CMAKE_FIND_PACKAGE_SORT_ORDER` variable is set. This variable, along with the :variable:`CMAKE_FIND_PACKAGE_SORT_DIRECTION` variable, determines the order in which CMake considers glob matches. For example, if the file system contains the package configuration files :: /example-1.2/example-config.cmake /example-1.10/example-config.cmake /share/example-2.0/example-config.cmake it is unspecified (when the aforementioned variables are unset) whether ``find_package(example)`` will find ``example-1.2`` or ``example-1.10`` (assuming that both are viable), but ``find_package`` will *not* find ``example-2.0``, because one of the other two will be found first. To control the order in which ``find_package`` searches directories that match a glob expression, use :variable:`CMAKE_FIND_PACKAGE_SORT_ORDER` and :variable:`CMAKE_FIND_PACKAGE_SORT_DIRECTION`. For instance, to cause the above example to select ``example-1.10``, one can set .. code-block:: cmake set(CMAKE_FIND_PACKAGE_SORT_ORDER NATURAL) set(CMAKE_FIND_PACKAGE_SORT_DIRECTION DEC) before calling ``find_package``. .. versionadded:: 3.16 Added the ``CMAKE_FIND_USE_`` variables to globally disable various search locations. .. versionchanged:: 4.0 The variables :variable:`CMAKE_FIND_PACKAGE_SORT_ORDER` and :variable:`CMAKE_FIND_PACKAGE_SORT_DIRECTION` now also control the order in which ``find_package`` searches directories matching the glob expression in the search paths ``/.framework/Versions/*/Resources/`` and ``/.framework/Versions/*/Resources/CMake``. In previous versions of CMake, this order was unspecified. .. include:: FIND_XXX_ROOT.txt .. include:: FIND_XXX_ORDER.txt By default the value stored in the result variable will be the path at which the file is found. The :variable:`CMAKE_FIND_PACKAGE_RESOLVE_SYMLINKS` variable may be set to ``TRUE`` before calling ``find_package`` in order to resolve symbolic links and store the real path to the file. Every non-REQUIRED ``find_package`` call can be disabled or made REQUIRED: * Setting the :variable:`CMAKE_DISABLE_FIND_PACKAGE_` variable to ``TRUE`` disables the package. This also disables redirection to a package provided by :module:`FetchContent`. * Setting the :variable:`CMAKE_REQUIRE_FIND_PACKAGE_` variable to ``TRUE`` makes the package REQUIRED. Setting both variables to ``TRUE`` simultaneously is an error. .. _`version selection`: Config Mode Version Selection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. note:: When Config mode is used, this version selection process is applied regardless of whether the :ref:`full ` or :ref:`basic ` signature was given. When the ``[version]`` argument is given, Config mode will only find a version of the package that claims compatibility with the requested version (see :ref:`format specification `). If the ``EXACT`` option is given, only a version of the package claiming an exact match of the requested version may be found. CMake does not establish any convention for the meaning of version numbers. CMake-script """""""""""" For CMake-script package configuration files, package version numbers are checked by "version" files provided by the packages themselves or by :module:`FetchContent`. For a candidate package configuration file ``.cmake`` the corresponding version file is located next to it and named either ``-version.cmake`` or ``Version.cmake``. If no such version file is available then the configuration file is assumed to not be compatible with any requested version. A basic version file containing generic version matching code can be created using the :module:`CMakePackageConfigHelpers` module. When a version file is found it is loaded to check the requested version number. The version file is loaded in a nested scope in which the following variables have been defined: ``PACKAGE_FIND_NAME`` The ```` ``PACKAGE_FIND_VERSION`` Full requested version string ``PACKAGE_FIND_VERSION_MAJOR`` Major version if requested, else 0 ``PACKAGE_FIND_VERSION_MINOR`` Minor version if requested, else 0 ``PACKAGE_FIND_VERSION_PATCH`` Patch version if requested, else 0 ``PACKAGE_FIND_VERSION_TWEAK`` Tweak version if requested, else 0 ``PACKAGE_FIND_VERSION_COUNT`` Number of version components, 0 to 4 When a version range is specified, the above version variables will hold values based on the lower end of the version range. This is to preserve compatibility with packages that have not been implemented to expect version ranges. In addition, the version range will be described by the following variables: ``PACKAGE_FIND_VERSION_RANGE`` Full requested version range string ``PACKAGE_FIND_VERSION_RANGE_MIN`` This specifies whether the lower end point of the version range should be included or excluded. Currently, the only supported value for this variable is ``INCLUDE``. ``PACKAGE_FIND_VERSION_RANGE_MAX`` This specifies whether the upper end point of the version range should be included or excluded. The supported values for this variable are ``INCLUDE`` and ``EXCLUDE``. ``PACKAGE_FIND_VERSION_MIN`` Full requested version string of the lower end point of the range ``PACKAGE_FIND_VERSION_MIN_MAJOR`` Major version of the lower end point if requested, else 0 ``PACKAGE_FIND_VERSION_MIN_MINOR`` Minor version of the lower end point if requested, else 0 ``PACKAGE_FIND_VERSION_MIN_PATCH`` Patch version of the lower end point if requested, else 0 ``PACKAGE_FIND_VERSION_MIN_TWEAK`` Tweak version of the lower end point if requested, else 0 ``PACKAGE_FIND_VERSION_MIN_COUNT`` Number of version components of the lower end point, 0 to 4 ``PACKAGE_FIND_VERSION_MAX`` Full requested version string of the upper end point of the range ``PACKAGE_FIND_VERSION_MAX_MAJOR`` Major version of the upper end point if requested, else 0 ``PACKAGE_FIND_VERSION_MAX_MINOR`` Minor version of the upper end point if requested, else 0 ``PACKAGE_FIND_VERSION_MAX_PATCH`` Patch version of the upper end point if requested, else 0 ``PACKAGE_FIND_VERSION_MAX_TWEAK`` Tweak version of the upper end point if requested, else 0 ``PACKAGE_FIND_VERSION_MAX_COUNT`` Number of version components of the upper end point, 0 to 4 Regardless of whether a single version or a version range is specified, the variable ``PACKAGE_FIND_VERSION_COMPLETE`` will be defined and will hold the full requested version string as specified. The version file checks whether it satisfies the requested version and sets these variables: ``PACKAGE_VERSION`` Full provided version string ``PACKAGE_VERSION_EXACT`` True if version is exact match ``PACKAGE_VERSION_COMPATIBLE`` True if version is compatible ``PACKAGE_VERSION_UNSUITABLE`` True if unsuitable as any version These variables are checked by the ``find_package`` command to determine whether the configuration file provides an acceptable version. They are not available after the ``find_package`` call returns. If the version is acceptable, the following variables are set: ``_VERSION`` Full provided version string ``_VERSION_MAJOR`` Major version if provided, else 0 ``_VERSION_MINOR`` Minor version if provided, else 0 ``_VERSION_PATCH`` Patch version if provided, else 0 ``_VERSION_TWEAK`` Tweak version if provided, else 0 ``_VERSION_COUNT`` Number of version components, 0 to 4 and the corresponding package configuration file is loaded. .. note:: While the exact behavior of version matching is determined by the individual package, many packages use :command:`write_basic_package_version_file` to supply this logic. The version check scripts this produces have some notable caveats with respect to version ranges: * The upper end of a version range acts as a hard limit on what versions will be accepted. Thus, while a request for version ``1.4.0`` might be satisfied by a package whose version is ``1.6.0`` and which advertises 'same major version' compatibility, the same package will be rejected if the requested version range is ``1.4.0...1.5.0``. * Both ends of the version range must match the package's advertised compatibility level. For example, if a package advertises 'same major and minor version' compatibility, requesting the version range ``1.4.0...<1.5.5`` or ``1.4.0...1.5.0`` will result in that package being rejected, even if the package version is ``1.4.1``. As a result, it is not possible to use a version range to extend the range of compatible package versions that will be accepted. |CPS| """"" For |CPS| package configuration files, package version numbers are checked by CMake according to the set of recognized version schemas. At present, the following schemas are recognized: ``simple`` Version numbers are a tuple of integers followed by an optional trailing segment which is ignored with respect to version comparisons. ``custom`` The mechanism for interpreting version numbers is unspecified. The version strings must match exactly for the package to be accepted. Refer to |cps-version_schema|_ for a more detailed explanation of each schema and how comparisons for each are performed. Note that the specification may include schemas that are not supported by CMake. In addition to the package's ``version``, CPS allows packages to optionally specify a |cps-compat_version|_, which is the oldest version for which the package provides compatibility. That is, the package warrants that a consumer expecting the ``compat_version`` should be able to use the package, even if the package's actual version is newer. If not specified, the ``compat_version`` is implicitly equal to the package version, i.e. no backwards compatibility is provided. When a package uses a recognized schema, CMake will determine the package's acceptability according to the following rules: * If ``EXACT`` was specified, or if the package does not supply a ``compat_version``, the package's ``version`` must equal the requested version. * Otherwise: * The package's ``version`` must be greater than or equal to the requested (minimum) version, and * the package's ``compat_version`` must be less than or equal to the requested (minimum) version, and * if a requested maximum version was given, it must be greater than (or equal to, depending on whether the maximum version is specified as inclusive or exclusive) the package's ``version``. .. note:: This implementation of range matching was chosen in order to most closely match the behavior of :command:`write_basic_package_version_file`, albeit without the case where an overly broad range matches nothing. For packages using the ``simple`` version schema, if the version is acceptable, the following variables are set: ``_VERSION`` Full provided version string ``_VERSION_MAJOR`` Major version if provided, else 0 ``_VERSION_MINOR`` Minor version if provided, else 0 ``_VERSION_PATCH`` Patch version if provided, else 0 ``_VERSION_TWEAK`` Tweak version if provided, else 0 ``_VERSION_COUNT`` Number of version components, non-negative Package File Interface Variables ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ When loading a find module or CMake-script package configuration file, ``find_package`` defines variables to provide information about the call arguments (and restores their original state before returning): ``CMAKE_FIND_PACKAGE_NAME`` The ```` which is searched for ``_FIND_REQUIRED`` True if ``REQUIRED`` option was given ``_FIND_QUIETLY`` True if ``QUIET`` option was given ``_FIND_REGISTRY_VIEW`` The requested view if ``REGISTRY_VIEW`` option was given ``_FIND_VERSION`` Full requested version string ``_FIND_VERSION_MAJOR`` Major version if requested, else 0 ``_FIND_VERSION_MINOR`` Minor version if requested, else 0 ``_FIND_VERSION_PATCH`` Patch version if requested, else 0 ``_FIND_VERSION_TWEAK`` Tweak version if requested, else 0 ``_FIND_VERSION_COUNT`` Number of version components, 0 to 4 ``_FIND_VERSION_EXACT`` True if ``EXACT`` option was given ``_FIND_COMPONENTS`` List of specified components (required and optional) ``_FIND_REQUIRED_`` True if component ```` is required, false if component ```` is optional When a version range is specified, the above version variables will hold values based on the lower end of the version range. This is to preserve compatibility with packages that have not been implemented to expect version ranges. In addition, the version range will be described by the following variables: ``_FIND_VERSION_RANGE`` Full requested version range string ``_FIND_VERSION_RANGE_MIN`` This specifies whether the lower end point of the version range is included or excluded. Currently, ``INCLUDE`` is the only supported value. ``_FIND_VERSION_RANGE_MAX`` This specifies whether the upper end point of the version range is included or excluded. The possible values for this variable are ``INCLUDE`` or ``EXCLUDE``. ``_FIND_VERSION_MIN`` Full requested version string of the lower end point of the range ``_FIND_VERSION_MIN_MAJOR`` Major version of the lower end point if requested, else 0 ``_FIND_VERSION_MIN_MINOR`` Minor version of the lower end point if requested, else 0 ``_FIND_VERSION_MIN_PATCH`` Patch version of the lower end point if requested, else 0 ``_FIND_VERSION_MIN_TWEAK`` Tweak version of the lower end point if requested, else 0 ``_FIND_VERSION_MIN_COUNT`` Number of version components of the lower end point, 0 to 4 ``_FIND_VERSION_MAX`` Full requested version string of the upper end point of the range ``_FIND_VERSION_MAX_MAJOR`` Major version of the upper end point if requested, else 0 ``_FIND_VERSION_MAX_MINOR`` Minor version of the upper end point if requested, else 0 ``_FIND_VERSION_MAX_PATCH`` Patch version of the upper end point if requested, else 0 ``_FIND_VERSION_MAX_TWEAK`` Tweak version of the upper end point if requested, else 0 ``_FIND_VERSION_MAX_COUNT`` Number of version components of the upper end point, 0 to 4 Regardless of whether a single version or a version range is specified, the variable ``_FIND_VERSION_COMPLETE`` will be defined and will hold the full requested version string as specified. In Module mode the loaded find module is responsible to honor the request detailed by these variables; see the find module for details. In Config mode ``find_package`` handles ``REQUIRED``, ``QUIET``, and ``[version]`` options automatically but leaves it to the package configuration file to handle components in a way that makes sense for the package. The package configuration file may set ``_FOUND`` to false to tell ``find_package`` that component requirements are not satisfied. .. _CPS: https://cps-org.github.io/cps/ .. |CPS| replace:: Common Package Specification .. _cps-compat_version: https://cps-org.github.io/cps/schema.html#compat-version .. |cps-compat_version| replace:: ``compat_version`` .. _cps-version_schema: https://cps-org.github.io/cps/schema.html#version-schema .. |cps-version_schema| replace:: ``version_schema`` CPS Transitive Requirements ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A |CPS| package description consists of one or more components which may in turn depend on other components either internal or external to the package. When external components are required, the providing package is noted as a package-level requirement of the package. Additionally, the set of required components is typically noted in said external package requirement. Where a CMake-script package description would use the :command:`find_dependency` command to handle transitive dependencies, CMake handles transitive dependencies for CPS itself using an internally nested ``find_package`` call. This call can resolve CPS package dependencies via *either* another CPS package, or via a CMake-script package. The manner in which the CPS component dependencies are handled is subject to some caveats. When the candidate for resolving a transitive dependency is another CPS package, things are simple; ``COMPONENTS`` and CPS "components" are directly comparable (and are effectively synonymous with CMake "imported targets"). CMake-script packages, however, are encouraged to (and often do) check that required components were found, whether or not the package describes separate components. Additionally, even those that do describe components typically do not have the same correlation to imported targets that is normal for CPS. As a result, passing the set of required components declared by a CPS package to ``COMPONENTS`` would result in spurious failures to resolve dependencies. To address this, if a candidate for resolving a CPS transitive dependency is a CMake-script package, CMake passes the required components as declared by the consuming CPS package as ``OPTIONAL_COMPONENTS`` and performs a separate, internal check that the candidate package supplied the required imported targets. Those targets must be named ``::``, in conformance with CPS convention, or the check will consider the package not found.