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Abstract
The C/C++11 memory model defines the semantics of concur-
rent memory accesses in C/C++, and in particular supports
racy “atomic” accesses at a range of different consistency
levels, from very weak consistency (“relaxed”) to strong, se-
quential consistency (“SC”). Unfortunately, as we observe in
this paper, the semantics of SC atomic accesses in C/C++11,
as well as in all proposed strengthenings of the semantics, is
flawed, in that (contrary to previously published results) both
suggested compilation schemes to the Power architecture are
unsound. We propose a model, called RC11 (for Repaired
C11), with a better semantics for SC accesses that restores the
soundness of the compilation schemes to Power, maintains
the DRF-SC guarantee, and provides stronger, more useful,
guarantees to SC fences. In addition, we formally prove, for
the first time, the correctness of the proposed stronger compi-
lation schemes to Power that preserve load-to-store ordering
and avoid “out-of-thin-air” reads.

CCS Concepts •Theory of computation→ Program se-
mantics; •Software and its engineering → Concurrent
programming languages

Keywords Weak memory models; C++11; declarative se-
mantics; sequential consistency

1. Introduction
The C/C++11 memory model (C11 for short) [8] defines the
semantics of concurrent memory accesses in C/C++, of which
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there are two general types: non-atomic and atomic. Non-
atomic accesses are intended for normal data: races on such
accesses are considered as programming errors and lead to
undefined behavior, thus ensuring that they can be compiled
to plain machine loads and stores and that it is sound to apply
standard sequential optimizations on non-atomic accesses.
In contrast, atomic accesses are specifically intended for
communication between threads: thus, races on atomics are
permitted, but at the cost of introducing hardware fence
instructions during compilation and imposing restrictions
on how such accesses may be merged or reordered.

The degree to which an atomic access may be reordered
with other operations—and more generally, the implemen-
tation cost of an atomic access—depends on its consistency
level, concerning which C11 offers programmers several op-
tions according to their needs. Strongest and most expensive
are sequentially consistent (SC) accesses, whose primary
purpose is to restore the simple interleaving semantics of se-
quential consistency [20] if a program (when executed under
SC semantics) only has races on SC accesses. This property is
called “DRF-SC” and was a main design goal for C11. To en-
sure DRF-SC, the standard compilation schemes for modern
architectures typically insert hardware “fence” instructions
appropriately into the compiled code, with those for weaker
architectures (like Power and ARMv7) introducing a full
(strong) fence adjacent to each SC access.

Weaker than SC atomics are release-acquire accesses,
which can be used to perform “message passing” between
threads without incurring the implementation cost of a full
SC access; and weaker and cheaper still are relaxed accesses,
which are intended to be compiled down to plain loads
and stores at the machine level and which provide only
the minimal synchronization guaranteed by the hardware.
Finally, the C11 model also supports language-level fence
instructions, which provide finer-grained control over where
hardware fences are to be placed and serve as a barrier to
prevent unwanted compiler optimizations.



In this paper, we are mainly concerned with the semantics
of SC atomics (i.e., SC accesses and SC fences), and their
interplay with the rest of the model. Since sequential consis-
tency is such a classical, well-understood notion, one might
expect that the semantics of SC atomics should be totally
straightforward, but sadly, as we shall see, it is not!

The main problem arises in programs that mix SC and
non-SC accesses to the same location. Although not common,
such mixing is freely permitted by the C11 standard, and has
legitimate uses—e.g., as a way of enabling faster (non-SC)
reads from an otherwise quite strongly synchronized data
structure. Indeed, we know of several examples of code in
the wild that mixes SC accesses together with release/acquire
or relaxed accesses to the same location: seqlocks [9] and
Rust’s crossbeam library [2]. Now, consider the following
program due to Manerkar et al. [22]:

x :=sc 1
a := xacq //1
c := ysc //0

b := yacq //1
d := xsc //0

y :=sc 1

(IRIW-acq-sc)
Here and in all other programs in this paper, we write a, b, ...
for local variables (registers), and assume that all variables
are initialized to 0. The program contains two variables, x and
y, which are accessed via SC atomic accesses and also read
by acquire atomic accesses. The annotated behavior (reading
a = b = 1 and c = d = 0) corresponds to the two threads
observing the writes to x and y as occurring in different
orders, and is forbidden by C11. (We defer the explanation
of how C11 forbids this behavior to §2.)

Let’s now consider how this program is compiled to Power.
Two compilation schemes have been proposed [7]. Both
use Power’s strongest fence instruction, called sync, for
the compilation of SC atomics. The first scheme, the one
implemented in the GCC and LLVM compilers, inserts a sync
fence before each SC access (“leading sync” convention),
whereas the alternative scheme inserts a sync fence after
each SC access (“trailing sync” convention). The intent of
both schemes is to have a strong barrier between every pair of
SC accesses, enforcing, in particular, sequential consistency
on programs containing only SC accesses. Nevertheless, by
mixing SC and release-acquire accesses, one can quickly get
into trouble, as illustrated by IRIW-acq-sc.

In particular, if one compiles the program into Power using
the trailing sync convention, then the behavior is allowed by
Power.1 Since all SC accesses are at the end of the threads, the
trailing sync fences have no effect, and the example reduces
to (the result of compilation of) IRIW with only acquire reads,
which is allowed by the Power memory model. In §2.1, we
show further examples illustrating that the other, leading sync
scheme also leads to behaviors in the target of compilation to
Power that are not permitted in the source.

Although the C11 model is known to have multiple prob-
lems (e.g., the “out-of-thin-air” problem [31, 11], the lack
of monotonicity [30]), none of them until now affected the

1 Formally, we use the recent declarative model of Power by Alglave et al. [4].

correctness of compilation to the mainstream architectures.
In contrast, the IRIW-acq-sc program from [22] and our ex-
amples in §2.1 show that both the suggested compilation
schemes to Power are unsound with respect to the C11 model,
thereby contradicting the results of [7, 27]. The same problem
occurs in some compilation schemes to ARMv7 (see §6), as
well as for ARMv8 (see [3] for an example).

In the remainder of the paper, we propose a way to repair
the semantics of SC accesses that resolves the problems
mentioned above. In particular, our corrected semantics
restores the soundness of the suggested compilation schemes
to Power. Moreover, it still satisfies the standard DRF-SC
theorem in the absence of relaxed accesses: if a program’s
sequentially consistent executions only ever exhibit races on
SC atomic accesses, then its semantics under full C11 is also
sequentially consistent. It is worth noting that this correction
only affects the semantics of programs mixing SC and non-
SC accesses to the same location: we show that, without such
mixing, it coincides with the strengthened model of Batty
et al. [5].

We also apply two additional, orthogonal, corrections
to the C11 model, which strengthen the semantics of SC
fences. The first fix corrects a problem already noted before
[27, 21, 17], namely that the current semantics of SC fences
does not recover sequential consistency, even when SC
fences are placed between every two commands in programs
with only release/acquire atomic accesses. The second fix
provides stronger “cumulativity” guarantees for programs
with SC fences. We justify these strengthenings by proving
that the existing compilation schemes for x86-TSO, Power,
and ARMv7 remain sound with the stronger semantics.

Finally, we apply another, mostly orthogonal, correction
to the C11 model, in order to address the well-known “out-of-
thin-air” problem. The problem is that the C11 standard per-
mits certain executions as a result of causality cycles, which
break even basic invariant-based reasoning [11] and invalidate
DRF-SC in the presence of relaxed accesses. The correction,
which is simple to state formally, is to strengthen the model
to enforce load-to-store ordering for atomic accesses, thereby
ruling out such causality cycles, at the expense of requiring a
less efficient compilation scheme for relaxed accesses. The
idea of this correction is not novel—it has been extensively
discussed in the literature [31, 11, 30]—but the suggested
compilation schemes to Power and ARMv7 have not yet been
proven sound. Here, we give the first proof that one of these
compilation schemes—the one that places a fake control de-
pendency after every relaxed read—is sound. The proof is
surprisingly delicate, and involves a novel argument similar
to that in DRF-SC proofs.

Putting all these corrections together, we propose a new
model called RC11 (for Repaired C11) that supports nearly
all features of the C11 model (§3). We prove correctness of
compilation to x86-TSO (§4), Power (§5), and ARMv7 (§6),



Wna(x, 0) Wna(y, 0)

k : Wsc(x, 1) l : Racq(x, 1)

m : Rsc(y, 0)

n : Racq(y, 1)

o : Rsc(x, 0)

p : Wsc(y, 1)

sb

mo mo

rf rfrf

Figure 1. An execution of IRIW-acq-sc yielding the result
a = b = 1 ∧ c = d = 0.

the soundness of a wide collection of program transforma-
tions (§7), and a DRF-SC theorem (§8).

2. The Semantics of SC Atomics in C11:
What’s Wrong, and How Can We Fix It?

The C11 memory model defines the semantics of a program
as a set of consistent executions. Each execution is a graph.
Its nodes, E, are called events and represent the individual
memory accesses and fences of the program, while its edges
represent various relations among these events:

• The sequenced-before (sb) relation, a.k.a. program order,
captures the order of events in the program’s control flow.
• The reads-from (rf) relation associates each write with

the set of reads that read from that write. In a consistent
execution, the reads-from relation should be functional
(and total) in the second argument: a read must read from
exactly one write.
• Finally, the modification order (mo) is a union of total

orders, one for each memory address, totally ordering
the writes to that address. Intuitively, it records for each
memory address the globally agreed-upon order in which
writes to that address happened.

As an example, in Fig. 1, we depict an execution of the IRIW-
acq-sc program discussed in the introduction. In addition to
the events corresponding to the accesses appearing in the
program, the execution contains two events for the implicit
non-atomic initialization writes to x and y, which are as-
sumed to be sb-before all other events.

Notation 1. Given a binary relation R, we write R?, R+,
and R∗ respectively to denote its reflexive, transitive, and
reflexive-transitive closures. The inverse relation is denoted
by R−1. We denote by R1;R2 the left composition of two
relations R1, R2, and assume that ; binds tighter than ∪ and
\. Finally, we denote by [A] the identity relation on a set A.
In particular, [A];R; [B] = R ∩ (A×B).

Based on these three basic relations, C11 defines some
derived relations. First, whenever an acquire or SC read
reads from a release or SC write, we say that the write
synchronizes with (sw) the read.2 Next, we say that one event
happens before (hb) another event if they are connected by a

2 The actual definition of sw contains further cases, which are not relevant
for the current discussion. These are included in our formal model in §3.

sequence of sb or sw edges. Formally, hb , (sb∪ sw)+. For
example, in Fig. 1, event k synchronizes with l and therefore
k happens-before l and m. Lastly, whenever a read event e
reads from a write that is mo-before another write f to the
same location, we say that e reads-before (rb) f (this relation
is also called “from-read” [4], but we find reads-before more
intuitive). Formally, rb , rf−1; mo \ [E]. The “\ [E]” part is
needed so that RMW events (“read-modify-write”, induced
by atomic update operations like fetch-and-add and compare-
and-swap) do not read-before themselves. For example, in
Fig. 1, we have 〈m, p〉 ∈ rb and 〈o, k〉 ∈ rb.

Consistent C11 executions require that hb is irreflexive
(equivalently, sb∪sw is acyclic), and further guarantee coher-
ence (aka SC-per-location) and atomicity of RMWs. Roughly
speaking, coherence ensures that (i) the order of writes to
the same location according to mo does not contradict hb
(COHERENCE-WW); (ii) reads do not read values written in
the future (NO-FUTURE-READ and COHERENCE-RW); (iii)
reads do not read overwritten values (COHERENCE-WR); and
(iv) two hb-related reads from the same location cannot read
from two writes in reversed mo-order (COHERENCE-RR). We
refer the reader to Prop. 1 in §3 for a formal definition of
coherence.

Now, to give semantics to SC atomics, C11 stipulates that
in consistent executions, there should be a strict total order,
S, over all SC events, intuitively corresponding to the order
in which these events are executed. This order is required
to satisfy a number of conditions (but see Remark 1 below),
where Esc denotes the set of all SC events in E:

(S1) S must include hb restricted to SC events
(formally: [Esc]; hb; [Esc] ⊆ S);

(S2) S must include mo restricted to SC events
(formally: [Esc]; mo; [Esc] ⊆ S);

(S3) S must include rb restricted to SC events
(formally: [Esc]; rb; [Esc] ⊆ S);

(S4-7) S must obey a few more conditions having to do with
SC fences.

Remark 1. The S3 condition above, due to Batty et al. [5],
is slightly simpler and stronger than the one imposed by the
official C11. Crucially, however, all the problems and coun-
terexamples we observe in this section, concerning the
C11 semantics of SC atomics, hold for both Batty et al.’s
model and the original C11. The reason we use Batty et al.’s
version here is that it provides a cleaner starting point for our
discussion, and our solution to the problems with C11’s SC
semantics will build on it.

Intuitively, the effect of the above conditions is to enforce
that, since S corresponds to the order in which SC events
are executed, it should agree with the other global orders
of events: hb, mo, and rb. However, as we will see shortly,
condition S1 is too strong. Before we get there, let us first



Wna(x, 0) Wna(y, 0)

k : Wsc(x, 1)

l : Rsc(y, 0)

m : Wsc(y, 1)

n : Rsc(x, 0)

mo mo

rf

rb

Wna(x, 0) Wna(y, 0)

k : Wsc(x, 1)

l : Wsc(y, 2)

m : Rrlx(y, 1)

n : Wsc(y, 1)

o : Wsc(x, 2)

p : Rrlx(x, 1)

mo

rf

Figure 2. Inconsistent C11 executions of SB and 2+2W.

look at a few examples to illustrate how the conditions on S

interact to enforce sequential consistency.
Consider the classic “store buffering” litmus test:

x :=sc 1
a := ysc //0

y :=sc 1
b := xsc //0 (SB)

Here, the annotated behavior is forbidden by C11. To see this,
consider the first execution graph in Fig. 2. The rf edges
are forced because of the values read, while the mo edges
are forced because of COHERENCE-WW. Then, S(k, l) and
S(m,n) hold because of condition S1; while S(l,m) and
S(n, k) hold because of condition S3. This entails a cycle in
S, which is disallowed.

Similarly, C11’s conditions guarantee that the following
(variant given in [32] of the) 2+2W litmus test disallows the
annotated weak behavior:

x :=sc 1
y :=sc 2
a := yrlx //1

y :=sc 1
x :=sc 2
b := xrlx //1

(2+2W)

To see this, consider the second execution graph in Fig. 2,
which has the outcome a = b = 1: the rf and mo edges
are forced because of the values read and COHERENCE-WR.
Now, S(k, l) and S(n, o) hold because of condition S1; while
S(l, n) and S(o, k) hold because of condition S2. Again, this
entails a cycle in S.

Let us now move to the IRIW-acq-sc program from the
introduction, whose annotated behavior is also forbidden
by C11. To see that, suppose without loss of generality
that S(p, k) in Fig. 1. We also know that S(k,m) because
of happens-before via l (S1). Thus, by transitivity, S(p,m).
However, if the second thread reads y = 0, then m reads-
before p, in which case S(m, p) (S3), and S has a cycle.

2.1 First Problem: Compilation to Power is Broken
The IRIW-acq-sc example demonstrates that the trailing sync
compilation to Power is unsound for the C11 model. We
will now see an example showing that the leading sync
compilation is also unsound. Consider the following behavior,
where all variables are zero-initialized and FAI(y) represents
an atomic fetch-and-increment of y returning its value before
the increment:

x :=sc 1
y :=rel 1

b := FAI(y)sc //1
c := yrlx //3

y :=sc 3
a := xsc //0 (Z6.U)

Wna(x, 0)

k : Wsc(x, 1)

l : Wrel(y, 1)

m : RMWsc(y, 1, 2)

n : Rrlx(y, 3)

o : Wsc(y, 3)

p : Rsc(x, 0)

mo

mo
mo

rf
sw

rf
rf

Figure 3. A C11 execution of Z6.U. The initialization of y
is omitted as it is not relevant.

We will show that the behavior is disallowed according to
C11, but allowed by its compilation to Power.

Fig. 3 depicts the only execution yielding the behavior in
question that satisfies the coherence constraints. Again, the rf
and mo edges are forced: even if all accesses in the program
were relaxed atomic, they would have to go this way. S(k,m)
holds because of condition S1 (k happens-before l, which
happens-before m); S(m, o) holds because of condition S2
(m precedes o in modification order); S(o, p) holds because
of condition S1 (o happens-before p). Finally, since p reads
x = 0, we have that p reads-before k, so by S3, S(p, k), thus
forming a cycle in S.

Under the leading sync compilation to Power, however,
the behavior is allowed. Intuitively, all but one of the sync

fences because of the SC accesses are useless because they
are at the beginning of a thread. In the absence of other sync
fences, the only remaining sync fence, due to the a := xsc
load in the last thread, is equivalent to an lwsync fence (cf.
[17, §7]).

In [3] we provide a similar example using SC fences
instead of RMW instructions, which shows that even placing
sync fences both before and after SC accesses is unsound.

What Went Wrong and How to Fix it Generally, in order to
provide coherence, hardware memory models provide rather
strong ordering guarantees on accesses to the same memory
location. Consequently, for conditions S2 and S3, which only
enforce orderings between accesses to the same location,
ensuring that compilation preserves these conditions is not
difficult, even for weaker architectures like Power and ARM.

When, however, it comes to ensuring a strong ordering
between accesses of different memory locations, as S1 does,
compiling to weaker hardware requires the insertion of
appropriate memory fence instructions. In particular, for
Power, to enforce a strong ordering between two hb-related
accesses to different locations, there should be a Power sync
fence occurring somewhere in the hb-path (the sequence of
sb and sw edges) connecting the two accesses. Unfortunately,
in the presence of mixed SC and non-SC accesses, the Power
compilation schemes do not always ensure that a sync exists
between hb-related SC accesses. Specifically, if we follow the
trailing sync convention, the hb-path (in Fig. 1) from k to m
starting with an sw edge avoids the sync fence placed after k.
Conversely, if we follow the leading sync convention, the hb-
path (in Fig. 3) from k to m ending with an sw edge avoids



the fence placed before m. The result is that S1 enforces more
ordering than the hardware provides!

So, if requiring that hb (on SC events) be included in S

is too strong a condition, what should we require instead?
The essential insight is that, according to either compilation
scheme, we know that a sync fence will necessarily exist
between SC accesses a and b if the hb path from a to b starts
and ends with an sb edge. Second, if a and b access the same
location, then the hardware will preserve the ordering anyway.
These two observations lead us to replace condition S1 with
the following:

(S1fix) S must relate any two SC events that are related by
hb, provided that the hb-path between the two events
either starts and ends with sb edges, or starts and ends
with accesses to the same location (formally: [Esc]; (sb ∪
sb; hb; sb ∪ hb|loc); [Esc] ⊆ S, where hb|loc denotes hb
edges between accesses to the same location).

We note that condition S1fix, although weaker than S1,
suffices to rule out the weak behaviors of the basic litmus tests
(i.e., SB and 2+2W). In fact, just to rule out these behaviors,
it suffices to require sb (on SC events) to be included in S.

In essence, according to S1fix, S must include all the hb-
paths between SC accesses to different locations that exist
regardless of any synchronization induced by the SC accesses
at their endpoints. If a program does not mix SC and non-SC
accesses to the same location, then every minimal hb-path
between two SC accesses to the same location (i.e., one which
does not go through another SC access) must start and end
with an sb edge, in which case S1 and S1fix coincide.

Fixing the Model Before formalizing our fix, let us first
rephrase conditions S1–S3 in the more concise style sug-
gested by Batty et al. [5]. Instead of expressing them as
separate conditions on a total order S, they require a single
acylicity condition, namely that [Esc]; (hb ∪ mo ∪ rb); [Esc]
be acyclic. (In general, acyclicity of

⋃
Ri is equivalent to the

existence of a total order that contains R1, R2, ...)
We propose to correct the condition by replacing hb with

sb ∪ sb; hb; sb ∪ hb|loc. Accordingly, we require that

[Esc]; (sb ∪ sb; hb; sb ∪ hb|loc ∪ mo ∪ rb); [Esc]

is acyclic. Note that this condition still ensures SC semantics
for programs that have only SC accesses. Indeed, since
[Esc]; rf; [Esc] ⊆ [Esc]; sw; [Esc] ⊆ [Esc]; hb|loc; [Esc], our
condition implies acyclicity of [Esc]; (sb∪rf∪mo∪rb); [Esc].
The latter suffices for this purpose, as it corresponds exactly
to the declarative definition of sequential consistency [28].

2.1.1 Enabling Elimination of SC Accesses
We observe that our condition disallows the elimination of an
SC write immediately followed by another SC write to the
same location, as well as of an SC read immediately preceded
by an SC read from the same location. While neither GCC
nor LLVM performs these eliminations, they are sound under

k : Racq(x, 2)

l : Rsc(y, 0)

m : Wsc(x, 1)

n : Wsc(x, 2)

o : Wsc(y, 1)

p : Rsc(x, 0)rf

rb

rb

rb

k : Racq(x, 2)

l : Rsc(y, 0) n : Wsc(x, 2)

o : Wsc(y, 1)

p : Rsc(x, 0)rf rb

rb

Figure 4. An abbreviated execution of WWmerge (source),
and of the resulting program after eliminating the overwritten
write m (target). The source execution has a disallowed cycle
(m, l, o, p,m), while the target execution does not.

sequential consistency, as well as under C11 (with the fixes
of [30]), and one may wish to preserve their soundness.

To see the unsoundness of eliminating an overwritten
SC write, consider the following program. The annotated
behavior is forbidden, but it will become allowed after
eliminating x :=sc 1 (see Fig. 4).

a := xacq //2
b := ysc //0

x :=sc 1
x :=sc 2

y :=sc 1
c := xsc //0 (WWmerge)

Similarly, eliminating a repeated SC read is unsound (see
example in [3]). The problem here is that these transforma-
tions remove an sb edge, and thus remove an sb; hb; sb path
between two SC accesses.

Note that the removed sb edges are all edges between
same-location accesses. Thus, supporting these transforma-
tions can be achieved by a slight weakening of our condi-
tion: we replace sb; hb; sb with sb| 6=loc; hb; sb|6=loc, where
sb| 6=loc denotes sb edges that are not between accesses to the
same location. Thus, we require acyclicity of [Esc]; scb; [Esc],
where scb (SC-before) is given by:

scb , sb ∪ sb| 6=loc; hb; sb| 6=loc ∪ hb|loc ∪ mo ∪ rb.

We note that this change does not affect programs that do not
mix SC and non-SC accesses to the same location.

2.2 Second Problem: SC Fences are Too Weak
In this section we extend our model to cover SC fences, which
were not considered so far. Denote by Fsc the set of SC fences
in E. The straightforward adaptation of the condition of Batty
et al. [5] for the full model (obtained by replacing hb∪mo∪rb
with our scb) is that

psc1 ,
(
[Esc] ∪ [Fsc]; sb?

)
; scb;

(
[Esc] ∪ sb?; [Fsc]

)
is acyclic. This condition generalizes the earlier condition
by forbidding scb cycles even between non-SC accesses
provided they are preceded/followed by an SC fence. This
condition rules out weak behaviors of examples such as SB
and 2+2W where all accesses are relaxed and SC fences are
placed between them in the two threads.



k : Wrlx(x, 1) l : Rrlx(x, 1)

f1 : Fsc

m : Rrlx(y, 0)

n : Wrlx(y, 1)

f2 : Fsc

o : Rrlx(x, 0)

rf
rb

rb

Figure 5. An execution of RWC+syncs yielding the anno-
tated result. The rb edges are due to the reading from the
omitted initialization events and the mo edges from those.

In general, one might expect that inserting an SC fence be-
tween every two instructions restores sequential consistency.
This holds for hardware memory models, such as x86-TSO,
Power, and ARM, for programs with aligned word-sized ac-
cesses (for their analogue of SC fences), but holds neither in
the original C11 model nor in its strengthening [5] for two
reasons. The first reason is that C11 declares that programs
with racy non-atomic accesses have undefined behavior, and
even if fences are placed everywhere such races may exist.
There is, however, another way in which putting fences every-
where in C11 does not restore sequential consistency, even if
all the accesses are atomic. Consider the following program:

x :=rlx 1
a := xrlx //1
fencesc
b := yrlx //0

y :=rlx 1
fencesc
c := xrlx //0

(RWC+syncs)

The annotated behavior is allowed according to the model of
Batty et al. [5] (and so, also by our weaker condition above).
Fig. 5 depicts a consistent execution yielding this behavior,
as the only psc1 edge is from f1 to f2. Yet, this behavior is
disallowed by all implementations of C11. We believe that
this is a serious omission of the standard rendering the SC
fences too weak, as they cannot be used to enforce sequential
consistency. This weakness has also been observed in a C11
implementation of the Chase-Lev deque by Lê et al. [21], who
report that the weak semantics of SC fences in C11 requires
them to unnecessarily strengthen the access modes of certain
relaxed writes to SC. (In the context of the RWC+syncs, it
would amount to making the write to x in the first thread into
an SC write.)

Remark 2 (Itanium). This particular weakness of the stan-
dard is attributed to Itanium, whose fences do not guarantee
sequential consistency when inserted everywhere. While this
would be a problem if C11 relaxed accesses were compiled
to plain Itanium accesses, they actually have to be compiled
to release/acquire Itanium accesses to guarantee read-read
coherence. In this case, Itanium fences guarantee ordering. In
fact, Itanium implementations provide multi-copy atomicity
for release stores, and thus cannot yield the weak outcome of
IRIW even without fences [14, §3.3.7.1].

Fixing the Semantics of SC Fences Analyzing the execu-
tion of RWC+syncs, we note that there is a sb; rb; rf; sb
path from f2 to f1, but this path does not contribute to psc1.

Wrlx(x, 1)

Wrel(z, 1)

Racq(z, 1)

f1 : Fsc

Rrlx(y, 0)

Wrlx(y, 1)

f2 : Fsc

Rrlx(x, 0)

rf

sw rb

rb

Figure 6. An abbreviated execution of W+RWC.

Although both rb and rf edges contribute to psc1, their
composition rb; rf does not.

To repair the model, we define the extended coherence
order, eco , (rf ∪ mo ∪ rb)+. This order includes the
reads-from relation, rf, the modification order, mo, the reads-
before relation, rb, and also all the compositions of these
relations with one another—namely, all orders forced because
of the coherence axioms. Then, we require that psc1 ∪
[Fsc]; sb; eco; sb; [Fsc] is acyclic.

This stronger condition rules out the weak behavior of
RWC+syncs because there are sb; eco; sb paths from one
fence to another and vice versa (in one direction via the
x accesses and in the other direction via the y accesses).
Intuitively speaking, compilation remains correct with this
stronger model since eco exists only between accesses to
the same location, on which the hardware provides strong
ordering guarantees.

Now it is easy to see that, given a program without non-
atomic accesses, placing an SC fence between every two
accesses guarantees SC. Indeed, by the definition of SC, it
suffices to show that eco∪sb is acyclic. Consider a eco∪sb
cycle. Since eco and sb are irreflexive and transitive, the
cycle necessarily has the form (eco; sb)+. Thus, between
every two eco steps, there must be an SC fence. So in effect,
we have a cycle in eco; sb; [Fsc]; sb, which can be regrouped
to a cycle in [Fsc]; sb; eco; sb; [Fsc], which is forbidden by
our model.

Finally, one might further consider strengthening the
model by including eco in scb (which is used to define
psc1), thereby ruling out the weak behavior of a variant
of RWC+syncs using SC accesses instead of SC fences in
threads 2 and 3. We note, however, that this strengthening
is unsound for the default compilation scheme to x86-TSO
(see Remark 4 in §4).

2.2.1 Restoring Fence Cumulativity
Consider the following variant of the store buffering program,
where the write of x := 1 has been moved to another thread
with a release-acquire synchronization.

x :=rlx 1
z :=rel 1

a := zacq //1
fencesc
b := yrlx //0

y :=rlx 1
fencesc
c := xrlx //0

(W+RWC)

The annotated behavior corresponds to the writes of x and y
being observed in different orders by the reads, although SC
fences have been used in the observer threads. This behavior
is disallowed on x86, Power, and ARM because their fences



are cumulative: the fences order not only the writes performed
by the thread with the fence instruction, but also the writes of
other threads that are observed by the thread in question [23].

In contrast, the behavior is allowed by the model described
thus far. Consider the execution shown in Fig. 6. While there
is a sb; rb; sb path from f1 to f2, the only path from f2 back
to f1 is sb; rb; sb; sw; sb (or, more generally, hb; rb; hb),
and so the execution is allowed.

To disallow such behaviors, we can replace [Fsc]; sb and
sb; [Fsc] in the definitions above by [Fsc]; hb and hb; [Fsc].3

This leads us to our final condition that requires that pscbase∪
pscF is acyclic, where:

pscbase ,
(
[Esc] ∪ [Fsc]; hb?

)
; scb;

(
[Esc] ∪ hb?; [Fsc]

)
pscF , [Fsc]; (hb ∪ hb; eco; hb); [Fsc]

We note that [Fsc]; pscbase; [Fsc] ⊆ pscF. Hence, in pro-
grams without SC accesses (but with SC fences) it suffices to
require that pscF is acyclic.

2.3 A Final Problem: Out-of-Thin-Air Reads
The C11 memory model suffers from a major problem, known
as the “out-of-thin-air problem” [31, 11]. Designed to allow
efficient compilation and many optimization opportunities
for relaxed accesses, the model happened to be too weak, ad-
mitting “out-of-thin-air” behaviors, which no implementation
exhibits. The standard example is load buffering with some
form of dependencies in both threads:

a := xrlx //1
if (a) y :=rlx a

b := yrlx //1
if (b) x :=rlx b

(LB+deps)

In this program, the formalized C11 model by Batty et al. [8]
allows reading a = b = 1 even though the value 1 does
not appear in the program. The reason is that the execution
where both threads read and write the value 1 is consistent:
each read reads from the write of the other thread. As one
might expect, such behaviors are very problematic because
they invalidate almost all forms of formal reasoning about
programs. In particular, the example above demonstrates a
violation of DRF-SC, the most basic guarantee that users of
C11 were intended to assume: LB+deps has no races under
sequential consistency, and yet has some non-SC behavior.

Fixing the model in a way that forbids all “out-of-thin-
air” behaviors and still allows the most efficient compilation
is beyond the scope of the current paper (see [16] for a
possible solution). In this paper, we settle for a simpler
solution of requiring sb∪rf to be acyclic. This is a relatively
straightforward way to avoid the problem, although it carries
some performance cost. Clearly, it rules out the weak behavior
of LB+deps, but also of the following load-buffering program,
which is nevertheless permitted by the Power and ARM

3 To rule out only the cycle shown in Fig. 6, it would suffice to have replaced
only the sb to a fence by an hb. We can, however, also construct examples,
where it is useful for the sb from a fence to be replaced by hb.

architectures.

a := xrlx //1
y :=rlx 1

b := yrlx //1
x :=rlx 1

(LB)

To correctly compile the stronger model to Power and ARM,
one has to either introduce a fence between a relaxed atomic
read and a subsequent relaxed atomic write or a forced depen-
dency between every such pair of accesses [11]. The latter
can be achieved by inserting a dummy control-dependent
branch after every relaxed atomic read.

While the idea of strengthening C11 to require acyclicity
of sb ∪ rf is well known [31, 11], we are not aware of any
proof showing that the proposed compilation schemes of
Boehm and Demsky [11] are correct, nor that DRF-SC holds
under this assumption. The latter is essential for assessing
our corrected model, as it is a key piece of evidence showing
that our semantics for SC accesses is not overly weak.

Importantly, even in this stronger model, non-atomic
accesses are compiled to plain machine loads and stores. This
is what makes the compilation correctness proof highly non-
trivial, as the hardware models allow certain sb ∪ rf cycles
involving plain loads and stores. As a result, one has to rely
on the “catch-fire” semantics (races on non-atomic accesses
result in undefined behavior) for explaining behaviors that
involve such cycles. A similar argument is needed for proving
the correctness of non-atomic read-write reordering.

3. The Proposed Memory Model
In this section, we formally define our proposed corrected
version of the C11 model, which we call RC11. Similar to
C11, the RC11 model is given in a “declarative” style in
three steps: we associate a set of graphs (called executions) to
every program (§3.1), filter this set by imposing a consistency
predicate (§3.2), and finally define the outcomes of a program
based on the set of its consistent executions (§3.3). At the end
of the section, we compare our model with C11 (§3.4).

Before we start, we introduce some further notation. Given
a binary relation R, dom(R) and codom(R) denote its do-
main and codomain. Given a function f , =f denotes the
set of f -equivalent pairs (=f , {〈a, b〉 | f(a) = f(b)}),
and R|f denotes the restriction of R to f -equivalent pairs
(R|f , R ∩ =f ). When R is a strict partial order, R|imm
denotes the set of all immediate R edges, i.e., pairs 〈a, b〉 ∈ R
such that for every c, 〈c, b〉 ∈ R implies 〈c, a〉 ∈ R?, and
〈a, c〉 ∈ R implies 〈b, c〉 ∈ R?.

We assume finite sets Loc and Val of locations and values.
We use x, y, z as metavariables for locations and v for values.
The model supports several modes for accesses and fences,
partially ordered by @ as follows:

rel
**

na // rlx
55

))
acqrel // sc

acq
44



3.1 From Programs to Executions
First, the program is translated into a set of executions. An
execution G consists of:

1. a finite set of events E ⊆ N containing a distinguished
set E0 = {ax0 | x ∈ Loc} of initialization events. We use
a, b, ... as metavariables for events.

2. a function lab assigning a label to every event in E. Labels
are of one of the following forms:

• Ro(x, v) where o ∈ {na, rlx, acq, sc}.
• Wo(x, v) where o ∈ {na, rlx, rel, sc}.
• Fo where o ∈ {acq, rel, acqrel, sc}.

We assume that lab(ax0) = Wna(x, 0) for every ax0 ∈ E0.
lab naturally induces the functions typ, mod, loc, valr,
and valw that return (when applicable) the type (R, W or
F), mode, location, and read/written value of an event.
For T ∈ {R, W, F}, T denotes the set {e ∈ E | typ(e) = T}.
We also concatenate the event sets notations, use sub-
scripts to denote the accessed location, and superscripts
for modes (e.g., RW = R ∪ W and Wwrelx denotes all events
a ∈ W with loc(a) = x and mod(a) w rel).

3. a strict partial order sb ⊆ E× E, called sequenced-before,
which orders the initialization events before all other
events, i.e., E0 × (E \ E0) ⊆ sb.

4. a binary relation rmw ⊆ [R]; (sb|imm∩ =loc); [W], called
read-modify-write pairs, such that for every 〈a, b〉 ∈ rmw,
〈mod(a), mod(b)〉 is one of the following:

• 〈rlx, rlx〉 (RMWrlx)
• 〈acq, rlx〉 (RMWacq)
• 〈rlx, rel〉 (RMWrel)

• 〈acq, rel〉 (RMWacqrel)
• 〈sc, sc〉 (RMWsc)

We denote by At the set of all events in E that are a part
of an rmw edge (that is, At = dom(rmw) ∪ codom(rmw)).
Note that our executions represent RMWs differently from
C11 executions. Here each RMW is represented as two
events, a read and a write, related by the rmw relation,
whereas in C11 they are represented by single RMW events,
which act as both the read and the write of the RMW.
Our choice is in line with the Power and ARM memory
models, and simplifies the formal development (e.g., the
definition of receptiveness).

5. a binary relation rf ⊆ [W]; =loc; [R], called reads-from,
satisfying (i) valw(a) = valr(b) for every 〈a, b〉 ∈ rf;
and (ii) a1 = a2 whenever 〈a1, b〉, 〈a2, b〉 ∈ rf.

6. a strict partial order mo on W, called modification order,
which is a disjoint union of relations {mox}x∈Loc, such
that each mox is a strict total order on Wx.

In what follows, to resolve ambiguities, we may include a
prefix “G.” to refer to the components of an execution G.

Executions of a given program represent prefixes of traces
of shared memory accesses and fences that are generated by

ax
0 : Wna(x, 0)ay

0 : Wna(y, 0)

k : Wsc(x, 1)

l : Wrel(y, 1)

mr : Rsc(y, 1)

mw : Wsc(y, 2)

n : Rrlx(y, 3)

o : Wsc(y, 3)

p : Rsc(x, 0)

rmw

mo
mo

mo

mo
rf

rf
rf

Figure 7. An execution of Z6.U.

the program. In this paper, we only consider “partitioned”
programs of the form ‖i∈Tid ci, where Tid is a finite set
of thread identifiers, ‖ denotes parallel composition, and
each ci is a sequential program. Then, the set of executions
associated with a given program is defined by induction
over the structure of sequential programs. We do not define
formally this construction (it depends on the particular syntax
and features of the source programming language). In this
initial stage the read values are not restricted whatsoever (and
rf and mo are arbitrary). Note that the set of executions of
a program P is taken to be prefix-closed: an sb-prefix of
an execution of P (which includes at least the initialization
events) is also considered to be an execution of P . By full
executions of P , we refer to executions that represent traces
generated by the whole program P .

We show an example of an execution in Fig. 7. This is
a full execution of the Z6.U program, and is essentially the
same as the C11 execution shown in Fig. 3, except for the
representation of RMWs (see Item 4 above).

3.2 Consistent Executions
The main part of the memory model is filtering the consistent
executions among all executions of the program. The first
obvious restriction is that every read should read some
written value (formally, R ⊆ codom(rf)). We refer to such
executions as complete.

To state the other constraints we use a number of derived
relations:

rb , rf−1; mo (reads-before)

eco , (rf ∪ mo ∪ rb)+ (extended coherence order)

rs , [W]; sb|?loc; [Wwrlx]; (rf; rmw)∗ (release sequence)

sw , [Ewrel]; ([F]; sb)?; rs; rf;
[Rwrlx]; (sb; [F])?; [Ewacq]

(synchronizes with)

hb , (sb ∪ sw)+ (happens-before)

The first two, rb and eco, are as described previously. Note
that since the modification order, mo, is transitive, we have
eco = rf ∪ (mo ∪ rb); rf? in every execution.

The other three relations, rs, sw and hb, are taken from
[30]. Intuitively, hb records when an event is globally per-
ceived as occurring before another one. It is defined in terms
of two more basic relations. First, the release sequence (rs)
of a write contains the write itself and all later atomic writes



to the same location in the same thread, as well as all RMWs
that recursively read from such writes. Next, a release event a
synchronizes with (sw) an acquire event b, whenever b (or, in
case b is a fence, some sb-prior read) reads from the release
sequence of a (or in case a is a fence, of some sb-later write).
Then, we say that an event a happens-before (hb) an event b
if there is a path from a to b consisting of sb and sw edges.

Finally, we define the SC-before relation, scb, and the
partial SC relations, pscbase and pscF, as follows:

sb|6=loc , sb \ sb|loc
scb , sb ∪ sb| 6=loc; hb; sb| 6=loc ∪ hb|loc ∪ mo ∪ rb

pscbase ,
(
[Esc] ∪ [Fsc]; hb?

)
; scb;

(
[Esc] ∪ hb?; [Fsc]

)
pscF , [Fsc]; (hb ∪ hb; eco; hb); [Fsc]
psc , pscbase ∪ pscF

Using these derived relations, RC11 imposes four constraints
on executions:

Definition 1. An execution G is called RC11-consistent if it
is complete and the following hold:

• hb; eco? is irreflexive. (COHERENCE)
• rmw ∩ (rb; mo) = ∅. (ATOMICITY)
• psc is acyclic. (SC)
• sb ∪ rf is acyclic. (NO-THIN-AIR)

COHERENCE ensures that programs with only one shared
location are sequentially consistent, as at least two locations
are needed for a cycle in sb ∪ eco. ATOMICITY ensures that
the read and the write comprising a RMW are adjacent in
eco: there is no write event in between. The SC condition is
the main novelty of RC11 and is used to give semantics to SC
accesses and fences. Finally, NO-THIN-AIR rules out thin-air
behaviors, albeit at a performance cost, as we will see in §5.

3.3 Program Outcomes
Finally, in order to allow the compilation of non-atomic read
and writes to plain machine load and store instructions (as
well as the compiler to reorder such accesses), RC11 follows
the “catch-fire” approach: races on non-atomic accesses
result in undefined behavior, that is, any outcome is allowed.
Formally, it is defined as follows.

Definition 2. Two events a and b are called conflicting in an
execution G if a, b ∈ E, W ∈ {typ(a), typ(b)}, a 6= b, and
loc(a) = loc(b). A pair 〈a, b〉 is called a race in G (denoted
〈a, b〉 ∈ race) if a and b are conflicting events in G, and
〈a, b〉 6∈ hb ∪ hb−1.

Definition 3. An execution G is called racy if there is some
〈a, b〉 ∈ race with na ∈ {mod(a), mod(b)}. A program P
has undefined behavior under RC11 if it has some racy RC11-
consistent execution.

Definition 4. The outcome of an execution G is the function
assigning to every location x the value written by the mo-
maximal event in Wx. We say that O : Loc → Val is an

outcome of a program P under RC11 if either O is an
outcome of some RC11-consistent full execution of P , or
P has undefined behavior under RC11.

3.4 Comparison with C11
Besides the new SC and NO-THIN-AIR conditions, RC11
differs in a few other ways from C11.

• It does not support consume accesses, a premature feature
of C11 that is not implemented by major compilers, nor
locks, as they can be straightforwardly implemented with
release-acquire accesses.
• For simplicity, it assumes all locations are initialized.
• It incorporates the fixes proposed by Vafeiadis et al. [30],

namely (i) the strengthening of the release sequences def-
inition, (ii) the removal of restrictions about different
threads in the definition of synchronization, and (iii) the
lack of distinction between atomic and non-atomic loca-
tions (and accordingly omitting the problematic rf ⊆ hb

condition for non-atomic locations). The third fix avoids
“out-of-thin-air” problems that arise when performing non-
atomic accesses to atomic location [6, §5].
• It does not consider “unsequenced races” between atomic

accesses to have undefined behavior. Our results are not
affected by such undefined behavior.

We have also made three presentational changes: (1) we have
a much more concise axiomatization of coherence; (2) we
model RMWs using two events; and (3) we do not have a
total order over SC atomics.

Proposition 1. RC11’s COHERENCE condition is equivalent
to the conjunction of the following constraints of C11:
• hb is irreflexive. (IRREFLEXIVE-HB)
• rf; hb is irreflexive. (NO-FUTURE-READ)
• mo; rf; hb is irreflexive. (COHERENCE-RW)
• mo; hb is irreflexive. (COHERENCE-WW)
• mo; hb; rf−1 is irreflexive. (COHERENCE-WR)
• mo; rf; hb; rf−1 is irreflexive. (COHERENCE-RR)

Proposition 2. The SC condition is equivalent to requiring
the existence of a total strict order S on Esc such that S; psc
is irreflexive.

Finally, the next proposition ensures that without mixing
SC and non-SC accesses to the same location, RC11 supplies
the stronger guarantee of C11. As a consequence, program-
mers that never mix such accesses may completely ignore the
difference between RC11 and C11 regarding SC accesses.

Proposition 3. If SC accesses are to distinguished locations
(for every a, b ∈ E\E0, if mod(a) = sc and loc(a) = loc(b)
then mod(b) = sc) then [Esc]; hb; [Esc] ⊆ psc+.

4. Compilation to x86-TSO
In this section, we present the x86-TSO memory model, and
show that its intended compilation scheme is sound. We use a



(|R|) , MOV (from memory) (|Wvrel|) , MOV (to memory)
(|Wsc|) , MOV;MFENCE (|RMW|) , CMPXCHG

(|F 6=sc|) , No operation (|Fsc|) , MFENCE

Figure 8. Compilation to TSO.

declarative model of x86-TSO from [17], that we denote
by TSO. By [25, Theorem 3] and [17, Theorem 5], this
definition is equivalent to the better known operational one.
TSO executions are similar to the ones defined above, with
the following exceptions:

• Read/write/fence labels have the form R(x, v), W(x, v),
and F (they do not include a “mode”). In addition, labels
may also be RMW(x, vr, vw), and executions do not include
an rmw component (i.e., RMWs are represented with a
single event). We use RMW to denote the set of all events
a ∈ E with typ(a) = RMW.
• The modification order, mo, is a strict total order on
W ∪ RMW ∪ F (rather than a union of total order on writes
to the same location).
• Happens-before is given by hb , (sb ∪ rf)+.

• Reads-before is given by rb , rf−1; mo|loc \ [E].

Remark 3. Lahav et al. [17] treat fence instructions as
syntactic sugar for RMWs of a distinguished location. Here,
we have fences as primitive instructions that induce fence
events in TSO executions.

Definition 5. A TSO execution G is TSO-consistent if it is
complete and the following hold:

1. hb is irreflexive.
2. mo; hb is irreflexive.
3. rb; hb is irreflexive.
4. rb; mo is irreflexive.
5. rb; mo; rfe; sb is irreflexive (where rfe = rf \ sb).
6. rb; mo; [RMW ∪ F]; sb is irreflexive.

Unlike RC11, well-formed TSO programs do not have
undefined behavior. Thus, a function O : Loc → Val is an
outcome of a TSO program P if it is an outcome of some
TSO-consistent full execution of P (see Def. 4).

Fig. 8 presents the compilation scheme from C11 to x86-
TSO that is implemented in the GCC and the LLVM compilers.
Since TSO provides strong consistency guarantees, it allows
most language primitives to be compiled to plain loads and
stores. Barriers are only needed for the compilation of SC
writes. Our next theorem says that this compilation scheme
is also correct for RC11.

Theorem 1. For a program P , denote by (|P |) the TSO
program obtained by compiling P using the scheme in Fig. 8.
Then, given a program P , every outcome of (|P |) under TSO
is an outcome of P under RC11.

Proof (Outline). We consider the compilation as if it happens
in three steps, and prove the soundness of each step:

1. All non-atomic/relaxed accesses are strengthened to re-
lease/acquire ones, and all relaxed/release/acquire RMWs
are strengthened to acquire-release ones. It is easy to see
that this step does not introduce new outcomes (see §7).

2. All non-SC fences are removed. Due to the previous step,
it is easy to show that non-SC fences have no effect.

3. The mappings in Fig. 8 are applied. The correctness of
this step, given in [3], is established by showing that given
aTSO-consistent TSO execution Gt of (|P |) (where P
has no non-SC fences), there exists an RC11-consistent
execution G of P that has the same outcome as Gt.

In fact, the proof of Thm. 1 establishes the correctness
of compilation even for a strengthening of RC11 obtained
by replacing the scb relation by scb′ , hb ∪ mo ∪ rb. This
entails that the original C11 model, as well as Batty et al.’s
strengthening [5], are correctly compiled to x86-TSO. Addi-
tionally, the proof only assumes the existence of an MFENCE

between every store originated from an SC write and load
originated from an SC read. The compilation scheme in Fig. 8
achieves this by placing an MFENCE after each store that orig-
inated from an SC write. An alternative correct compilation
scheme may place MFENCE before SC reads, rather than after
SC writes [1]. (Since there are typically more SC reads than
SC writes in programs, the latter scheme is less preferred.)

Remark 4. The compilation scheme that places MFENCE

before SC reads can be shown to be sound even for a very
strong SC condition that requires acyclicity of

pscstrong = ([Esc]∪[Fsc]; hb?); (hb∪eco); ([Esc]∪hb?; [Fsc]).

To prove this (see [3]), we are able to follow a simpler ap-
proach utilizing the recent result of Lahav and Vafeiadis [19]
that provides a characterization of TSO in terms of program
transformations (or “compiler optimizations”). This allows
one to reduce compilation correctness to soundness of cer-
tain transformations. The preferred compilation scheme to
x86-TSO, which uses barriers after SC writes (see Fig. 8),
is unsound if one requires acyclicity of pscstrong, or even if
one requires acyclicity of [Esc]; (sb∪ eco); [Esc]. To see this,
consider the following variant of SB:

x :=rel 1
a := xsc //1
b := ysc //0

y :=rel 1
c := ysc //1
d := xsc //0

(SB+rfis)

Any execution of this program that yields the annotated
behavior has a cycle in [Esc]; (sb ∪ eco); [Esc] (we have
rb; rf both from Rsc(x, 0) to Rsc(x, 1), and from Rsc(y, 0)
to Rsc(y, 1)). However, since the program has no SC writes,
following Fig. 8, all accesses are compiled to plain accesses,
and x86-TSO clearly allows this behavior.



5. Compilation to Power
In this section, we present the Power model and the mappings
of language operations to Power instructions. We then prove
the correctness of compilation from RC11 to Power.

As a model of the Power architecture, we use the recent
declarative model by Alglave et al. [4], which we denote by
Power. Its executions are similar to the RC11’s execution,
with the following exceptions:

• Power executions track syntactic dependencies between
events in the same thread, and derive a relation called
preserved program order, denoted ppo, which is a subset
of sb guaranteed to be preserved. The exact definition of
ppo is quite intricate, and is included in [3].
• Read/write labels have the form R(x, v) and W(x, v) (they

do not include a “mode”). Power has two types of fence
events: a “lightweight fence” and a “full fence”. We
denote by Flwsync and Fsync the set of all lightweight
fence and full fence events in a Power execution. Power’s
“instruction fence” (isync) is used to derive ppo but is
not recorded in executions.

In addition to ppo, the following additional derived re-
lations are needed to define Power-consistency (see [4] for
further explanations and details).

• sync , [RW]; sb; [Fsync]; sb; [RW]

• lwsync , [RW]; sb; [Flwsync]; sb; [RW] \ (W× R)

• fence , sync ∪ lwsync (fence order)
• hb , ppo ∪ fence ∪ rfe (Power’s happens-before)
• prop1 , [W]; rfe?; fence; hb∗; [W]

• prop2 , (moe ∪ rbe)?; rfe?; (fence; hb∗)?; sync; hb∗

• prop , prop1 ∪ prop2 (propagation relation)

where for every relation c (e.g., rf, mo, etc.), we denote by
ce its thread-external restriction. Formally, ce = c \ sb.

Definition 6. A Power execution G is Power-consistent if it
is complete and the following hold:

1. sb|loc ∪ rf ∪ rb ∪ mo is acyclic. (SC-PER-LOC)
2. rbe; prop; hb∗ is irreflexive. (OBSERVATION)
3. mo ∪ prop is acyclic. (PROPAGATION)
4. rmw ∩ (rbe; moe) = ∅. (POWER-ATOMICITY)
5. hb is acyclic. (POWER-NO-THIN-AIR)

Remark 5. The model in [4] contains an additional con-
straint: mo ∪ [At]; sb; [At] should be acyclic (recall that
At = dom(rmw) ∪ codom(rmw)). Since none of our proofs
requires this property, we excluded it from Def. 6.

Like in the case of TSO, we say that a function O : Loc→
Val is an outcome of a Power program P if it is an outcome
of some Power-consistent full execution of P (see Def. 4).

As already mentioned, the two compilation schemes from
C11 to Power that have been proposed in the literature [1]

(|Rna|) , ld (|Wna|) , st

(|Rrlx|) , ld;cmp;bc (|Wrlx|) , st

(|Racq|) , ld;cmp;bc;isync (|Wrel|) , lwsync;st

(|F 6=sc|) , lwsync (|Fsc|) , sync

(|RMWrlx|) , L:lwarx;cmp;bc Le;stwcx.;bc L;Le:

(|RMWacq|) , (|RMWrlx|);isync
(|RMWrel|) , lwsync;(|RMWrlx|)
(|RMWacqrel|) , lwsync;(|RMWrlx|);isync

Figure 9. Compilation of non-SC primitives to Power.

Leading sync Trailing sync

(|Rsc|) , sync;(|Racq|) (|Rsc|) , ld;sync

(|Wsc|) , sync;st (|Wsc|) , (|Wrel|);sync
(|RMWsc|) , sync;(|RMWacq|) (|RMWsc|) , (|RMWrel|);sync

Figure 10. Compilations of SC accesses to Power.

differ only in the mappings used for SC accesses (see Fig. 10).
The first scheme follows the leading sync convention, and
places a sync fence before each SC access. The alternative
scheme follows the trailing sync convention, and places
a sync fence after each SC access. Importantly, the same
scheme should be used for all SC accesses in the program,
since mixing the schemes is unsound. The mappings for the
non-SC accesses and fences are common to both schemes
and are shown in Fig. 9. Note that our compilation of relaxed
reads is stronger than the one proposed for C11 (see §2.3).

Our main theorem says that the compilation schemes are
correct.

Theorem 2. For a program P , denote by (|P |) the Power
program obtained by compiling P using the scheme in Fig. 9
and either of the schemes in Fig. 10 for SC accesses. Then,
given a program P , every outcome of (|P |) under Power is an
outcome of P under RC11.

Proof (Outline). The main idea is to consider the compilation
as if it happens in three steps, and prove the soundness of
each step:

1. Leading sync: Each Rsc/Wsc/RMWsc in P is replaced by
Fsc followed by Racq/Wrel/RMWacqrel.
Trailing sync: Each Rsc/Wsc/RMWsc in P is replaced by
Racq/Wrel/RMWacqrel followed by Fsc.

2. The mappings in Fig. 9 are applied.
3. Leading sync: Pairs of the form sync;lwsync that orig-

inated from Wsc/RMWsc are reduced to sync (eliminating
the redundant lwsync).
Trailing sync: Any cmp;bc;isync;sync sequences
originated from Rsc/RMWsc are reduced to sync (elim-
inating the redundant cmp;bc;isync).

The resulting Power program is clearly identical to the one
obtained by applying the mappings in Figures 9 and 10.

The soundness for each step (that is, none of them intro-
duces additional outcomes) is established in [3].



HHH
HHX

Y
Ro2y Wo2y RMWo2y Fo2

Ro1x o1 v rlx o1, o2 v rlx ∧ (o1 = na ∨ o2 = na) o1 = na ∧ o2 v acq o1 6= rlx ∧ o2 = acq

Wo1x o1 6= sc ∨ o2 6= sc o2 v rlx o2 v acq o2 = acq

RMWo1x o1 v rel o1 v rel ∧ o2 = na − o1 w acq ∧ o2 = acq

Fo1 o1 = rel o1 = rel ∧ o2 6= rlx o1 = rel ∧ o2 w rel o1 = rel ∧ o2 = acq

Table 1. Deorderable pairs of accesses/fences (x and y are distinct locations).

The main difficulty (and novelty of our proof) lies in
proving soundness of the second step, and more specifically
in establishing the NO-THIN-AIR condition. Since Power,
unlike RC11, does not generally forbid sb ∪ rf cycles, we
have to show that such cycles can be untangled to produce
a racy RC11-consistent execution, witnessing the undefined
behavior. Here, the idea is, similar to DRF-SC proofs, to
detect a first rf edge that closes an sb∪rf cycle, and replace
it by a different rf edge that avoids the cycle. This is highly
non-trivial because it is unclear how to define a “first” rf

edge when sb∪ rf is cyclic. To solve this problem, we came
up with a different ordering of events, which does not include
all sb edges, and Power ensures to be acyclic (a relation we
call Power-before in [3]).

For completeness, we also show that the conditional
branch after the relaxed read is only necessary if we care
about enforcing the NO-THIN-AIR condition. That is, let
weakRC11 be the model obtained from RC11 by omitting
the NO-THIN-AIR condition, and denote by (|P |)weak the
Power program obtained by compiling P as above, except
that relaxed reads are compiled to plain loads (again, with
either leading or trailing syncs for SC accesses). Then, this
scheme is correct with respect to the weakRC11 model.

Theorem 3 (Compilation of weakRC11 to Power). Given a
program P , every outcome of (|P |)weak under Power is an
outcome of P under weakRC11.

Finally, we note that it is also possible to use a lightweight
fence (lwsync) instead of a fake control dependency and an
instruction fence (isync) in the compilation of (all or some)
acquire accesses.

6. Compilation to ARMv7
The ARMv7 model [4] is very similar to the Power model
just presented in §5. There are only two differences.

First, while ARMv7 has analogues for Power’s strong
fence and instruction fence (dmb for sync, and isb for
isync), it lacks an analogue for Power’s lightweight fence
(lwsync). Thus, on ARMv7 we have Flwsync = ∅ and so
fence = sync.

The second difference is that ARMv7 has a somewhat
weaker preserved program order, ppo, than Power, which in
particular does not always include [R]; sb|loc; [W] (following
the model in [4]). In our Power compilation proofs, however,
we never rely on this property of Power’s ppo (see [3]).

The compilation schemes to ARMv7 are essentially the
same as those to Power substituting the corresponding
ARMv7 instructions for the Power ones: dmb instead of sync
and lwsync, and isb instead of isync. The soundness of
compilation to ARMv7 follows directly from Theorems 2
and 3.

We note that neither GCC (version 5.4) nor LLVM (version
3.9) map acquire reads into ld;cmp;bc;isb. Instead, they
emit ld;dmb (that corresponds to Power’s ld;sync). With
this stronger compilation scheme, there is no correctness
problem in compilation of C11 to ARMv7. Nevertheless, if
one intends to use isb’s, the same correctness issue arises
(e.g., the one in Fig. 1), and RC11 overcomes this issue.

7. Correctness of Program Transformations
In this section, we list program transformations that are sound
in RC11, and prove that this is the case. As in [30], to have
a simple presentation, all of our arguments are performed at
the semantic level, as if the transformations were applied to
events in an execution. Thus, to prove soundness of a program
transformation Psrc  Ptgt, we are given an arbitrary RC11-
consistent execution Gtgt of Ptgt, and construct a RC11-
consistent execution Gsrc of Psrc, such that either Gsrc and
Gtgt have the same outcome or Gsrc is racy. In the former case,
we also show that Gtgt is racy only if Gsrc is. Consequently,
one obtains that every outcome of Ptgt under RC11 is also an
outcome of Psrc under RC11.

The soundness proofs (sketched in [3]) are mostly similar
to the proofs in [30], with the main difference concerning the
new SC condition.

Strengthening Strengthening transforms the mode o of
an event in the source into o′ in the target where o v o′.
Soundness of this transformation is trivial, because RC11-
consistency is monotone with respect to the mode ordering.

Sequentialization Sequentialization merges two program
threads into one, by interleaving their events in sb. Essen-
tially sequentialization just adds edges to the sb relation. Its
soundness trivially follows from the monotonicity of RC11-
consistency with respect to sb.

Deordering Table 1 defines the deorderable pairs, for
which we proved the soundness of the transformation
X; Y  X ‖ Y in RC11. (Note that reordering is obtained
by applying deordering and sequentialization.) Generally
speaking, RC11 supports all reorderings that are intended



Ro; Ro  Ro Wo; Wo  Wo

Wsc; Rsc  Wsc Wo; Racq  Wo

RMWo; Ror  RMWo RMWo; RMWo  RMWo

Wow ; RMWo  Wow Fo; Fo  Fo

Figure 11. Mergeable pairs (assuming both accesses are
to the same location). or denotes the maximal mode in
{rlx, acq, sc} satisfying or v o; and ow denotes the maxi-
mal mode in {rlx, rel, sc} satisfying ow v o.

to be sound in C11 [30], except for load-store reorderings
of relaxed accesses, which are unsound in RC11 due to the
conservative NO-THIN-AIR condition (if one omits this con-
dition, these reorderings are sound). Importantly, load-store
reorderings of non-atomic accesses are sound due to the
“catch-fire” semantics. The soundness of these reorderings
(in the presence of NO-THIN-AIR) was left open in [30], and
requires a non-trivial argument of the same nature as the one
used to show NO-THIN-AIR in the compilation correctness
proof.

Merging Merges are transformations of the form X; Y Z,
eliminating one memory access or fence. Fig. 11 defines
the set of mergeable pairs. Note that using strengthening,
the modes mentioned in Fig. 11 are upper bounds (e.g.,
R
acq
x ; Rrlxx can be first strengthened to R

acq
x ; Racqx and then

merged). Generally speaking, RC11 supports all mergings
that are intended to be mergeable in C11 [30].

Remark 6. The elimination of redundant read-after-write
allows the write to be non-atomic. Nevertheless, an SC read
cannot be eliminated in this case, unless it follows an SC
write. Indeed, eliminating an SC read after a non-SC write
is unsound in RC11. We note that the effectiveness of this
optimization seems to be low, and, in fact, it is already
unsound for the model in [5] (see [3] for a counterexample).
Note also that read-after-RMW elimination does not allow
the read to be an acquire read unless the update includes an
acquire read (unlike read-after-write). This is due to release
sequences: eliminating an acquire read after a relaxed update
may remove the synchronization due to a release sequence
ending in this update.

Register Promotion Finally, “register promotion” is sound
in RC11. This global program transformation replaces all the
accesses to a memory location by those to a register, provided
that the location is used by only one thread. At the execution
level, all accesses to a particular location are removed from
the execution, provided that they are all sb-related.

8. Programming Guarantees
In this section, we demonstrate that our semantics for SC
atomics (i.e., the SC condition in Def. 1) is not overly weak.
We do so by proving theorems stating that programmers who
follow certain defensive programming patterns can be assured
that their programs exhibit no weak behaviors. The first such

theorem is DRF-SC, which says that if a program has no races
on non-SC accesses under SC semantics, then its outcomes
under RC11 coincide with those under SC.

In our proofs we use the standard declarative definition of
SC: an execution is SC-consistent if it is complete, satisfies
ATOMICITY, and sb ∪ rf ∪ mo ∪ rb is acyclic [28].

Theorem 4. If in all SC-consistent executions of a program
P , every race 〈a, b〉 has mod(a) = mod(b) = sc, then the
outcomes of P under RC11 coincide with those under SC.

Note that the NO-THIN-AIR condition is essential for the
correctness of Thm. 4 (recall the LB+deps example).

Next, we show that adding a fence instruction between
every two accesses to shared locations restores SC, or there
remains a race in the program, in which case the program has
undefined behavior.

Definition 7. A location x is shared in an execution G if
〈a, b〉 6∈ sb ∪ sb−1 for some distinct events a, b ∈ Ex.

Theorem 5. Let G be an RC11-consistent execution. Sup-
pose that for every two distinct shared locations x and y,
[Ex]; sb; [Ey] ⊆ sb; [Fsc]; sb. Then, G is SC-consistent.

We remark that for the proofs of Theorems 4 and 5, we
do not need the full SC condition: for Thm. 4 it suffices for
[Esc]; (sb∪rf∪mo∪rb); [Esc] to be acyclic; and for Thm. 5
it suffices for [Fsc]; sb; eco; sb; [Fsc] to be acyclic.

9. Related Work
The C11 memory model was designed by the C++ standards
committee based on a paper by Boehm and Adve [10].
During the standardization process, Batty et al. [8] formalized
the C11 model and proved soundness of its compilation to
x86-TSO. They also proposed a number of key technical
improvements to the model (such as some coherence axioms),
which were incorporated into the standard.

Since then, however, a number of problems have been
found with the C11 model. In 2012, Batty et al. [7] and
Sarkar et al. [27] studied the compilation of C11 to Power,
and incorrectly proved the correctness of two compilation
schemes. In their proofs, from a consistent Power execution,
they constructed a corresponding C11 execution, which they
tried to prove consistent, but in doing so they forgot to check
the overly strong condition S1. The examples shown in §1
and in §2.1 are counterexamples to their theorems.

Quite early on, a number of papers [12, 31, 24, 11] noticed
the disastrous effects of thin-air behaviors allowed by the
C11 model, and proposed strengthening the definition of
consistency by disallowing sb ∪ rf cycles. Boehm and
Demsky [11] further discussed how the compilation schemes
of relaxed accesses to Power and ARM would be affected by
the change, but did not formally prove the correctness of their
proposed schemes.

Next, Vafeiadis et al. [30] noticed a number of other prob-
lems with the C11 memory model, which invalidated a num-



ber of source-to-source program transformations that were
assumed to hold. They proposed local fixes to those problems,
and showed that these fixes enabled proving correctness of a
number of local transformations. We have incorporated their
fixes in the RC11-consistency definition.

Then, in 2016, Batty et al. [5] proposed a more concise
semantics for SC atomics, whose presentation we have fol-
lowed in our proposed RC11 model. As their semantics is
stronger than C11, it cannot be compiled efficiently to Power,
contradicting the claim of that paper. Moreover, as already dis-
cussed, SC fences are still too weak according to their model:
in particular, putting them between every two accesses in a
program with only atomic accesses does not guarantee SC.

Recently, Manerkar et al. [22] discovered the problem
with trailing-sync compilation to Power (in particular, they
observed the IRIW-acq-sc counterexample), and identified the
mistake in the existing proof. Independently, we discovered
the same problem, as well as the problem with leading-sync
compilation. Moreover, in this paper, we have proposed a fix
for both problems, and proven that it works.

A number of previous papers [31, 29, 18, 17] have stud-
ied only small fragments of the C11 model—typically the
release/acquire fragment. Among these, Lahav et al. [17]
proposed strengthening the semantics of SC fences in a dif-
ferent way from the way we do here, by treating them as
read-modify-writes to a distinguished location. That strength-
ening, however, was considered in the restricted setting of
only release/acquire accesses, and does not directly scale
to the full set of C11 access modes. In fact, for the frag-
ment containing only SC fences and release/acquire accesses,
RC11-consistency is equivalent to RA-consistency that treats
SC fences as RMWs to a distinguished location [17].

Finally, several solutions to the “out-of-thin-air” problem
were recently suggested, e.g., [26, 15, 16]. These solutions
aim to avoid the performance cost of disallowing sb ∪ rf

cycles, but none of them follows the declarative framework
of C11. The conservative approach of disallowing sb ∪ rf

cycles allows us to formulate our model in the style of C11.

10. Conclusion
In this paper, we have introduced the RC11 memory model,
which corrects all the known problems of the C11 model (al-
beit at a performance cost for the “out-of-thin-air” problem).
We have further proved (i) the correctness of compilation
from RC11 to x86-TSO [25], Power and ARMv7 [4]; (ii) the
soundness of various program transformations; (iii) a DRF-
SC theorem; and (iv) a theorem showing that for programs
without non-atomic accesses, weak behaviors can be always
avoided by placing SC fences. It would be very useful to
mechanize the proofs of this paper in a theorem prover; we
leave this for future work.

A certain degree of freedom exists in the design of the
SC condition. A very weak version, which maintains the
two formal programming guarantees of this paper, would

require acyclicity of [Esc]; (sb ∪ rf ∪ mo ∪ rb); [Esc] ∪
[Fsc]; sb; eco; sb; [Fsc]. At the other extreme, one can re-
quire the acyclicity of pscstrong = ([Esc] ∪ [Fsc]; hb?); (hb ∪
eco); ([Esc] ∪ hb?; [Fsc]), and either disallow mixing SC and
non-SC accesses to the same location, or have rather ex-
pensive compilation schemes (for Power/ARMv7: compile
release-acquire atomics exactly as the SC ones; for TSO:
place a barrier before every SC read). Our choice of psc
achieves the following: (i) it allows free mixing of different
access modes to the same location in the spirit of C11; (ii) it
ensures the correctness of the existing compilation schemes;
and (iii) it coincides with pscstrong in the absence of mixing
of SC and non-SC accesses to the same location.

Regarding the infamous “out-of-thin-air” problem, we
employed in RC11 a conservative solution at the cost of
including a fake control dependency after every relaxed read.
While this was already considered a valid solution before,
we are the first to prove the correctness of this compilation
scheme, as well as the soundness of reordering of independent
non-atomic accesses under this model. Correctness of an
alternative scheme that places a lightweight fence before
every relaxed write is left for future work. It would be
interesting to evaluate the practical performance costs of
each scheme. On the one hand, relaxed writes (which are
not followed by a fence) are perhaps rare in real programs,
compared to relaxed reads. On the other hand, a control
dependency is cheaper than a lightweight fence, and relaxed
reads are often anyway followed by a control dependency.

Another important future direction would be to combine
our SC constraint with our recent operational model in [16],
which prevents “out-of-thin-air” values (and avoids undefined
behaviors altogether), while still allowing the compilation
of relaxed reads and writes to plain loads and stores. This
is, in particular, crucial for adopting a model like RC11 in a
type-safe language, like Java, which cannot allow undefined
behaviors. Integrating our SC condition in that model, how-
ever, is non-trivial because the model is defined in a very
different style from C11, and thus we will have to find an
equivalent operational way to check our SC condition.

Finally, extending RC11 with additional features of C11
(see §3.4) and establishing the correctness of compilation of
RC11 to ARMv8 [13] are important future goals as well.
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