/* * Copyright Nick Thompson, 2023 * Use, modification and distribution are subject to the * Boost Software License, Version 1.0. (See accompanying file * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #include #include using boost::math::optimization::differential_evolution_parameters; using boost::math::optimization::differential_evolution; double rosenbrock(std::vector const & x) { double result = 0; for (size_t i = 0; i < x.size() - 1; ++i) { double tmp = x[i+1] - x[i]*x[i]; result += 100*tmp*tmp + (1-x[i])*(1-x[i]); } return result; } int main() { auto de_params = differential_evolution_parameters>(); constexpr const size_t dimension = 10; // Search on [0, 2]^dimension: de_params.lower_bounds.resize(dimension, 0); de_params.upper_bounds.resize(dimension, 2); // This is a challenging function, increase the max generations 10x from default so we don't terminate prematurely: de_params.max_generations *= 10; std::random_device rd; std::mt19937_64 rng(rd()); // The global minima is exactly zero-but some leeway is required: double value_to_reach = 1e-5; auto local_minima = differential_evolution(rosenbrock, de_params, rng, value_to_reach); std::cout << "Minima: {"; for (auto l : local_minima) { std::cout << l << ", "; } std::cout << "}\n"; std::cout << "Value of cost function at minima: " << rosenbrock(local_minima) << "\n"; }